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Constrained Tensor Modeling Approach to Blind
Multiple-Antenna CDMA Schemes
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Abstract—In this paper, we consider an uplink multiple-antenna
code-division multiple-access (CDMA) system linking several mul-
tiple-antenna mobile users to one multiple-antenna base station.
For this system, a constrained third-order tensor decomposition is
introduced for modeling the multiple-antenna transmitter as well
as the received signal. The constrained structure of the proposed
tensor decomposition is characterized by two constraint matrices
that have a meaningful physical interpretation in our context.
They can be viewed as canonical allocation matrices that define
the allocation of users’ data streams and spreading codes to the
transmit antennas. The distinguishing features of the proposed
tensor modeling with respect to the already existing tensor-based
CDMA models are: i) it copes with multiple transmit antennas
and spreading codes per user and ii) it models several spatial
spreading/multiplexing schemes with multiple spreading codes by
controlling the constrained structure of the tensor signal model. A
systematic design procedure for the canonical allocation matrices
leading to a unique blind symbol (or joint blind symbol-code)
recovery is proposed which allows us to derive a finite set of
multiple-antenna schemes for a fixed number of transmit an-
tennas. Identifiability of the proposed tensor model is discussed,
and a blind multiuser detection receiver based on the alternating
least squares algorithm is considered for performance evaluation
of several multiple-antenna CDMA schemes derived from the
constrained modeling approach.

Index Terms—Blind detection, canonical allocation, code-
division multiple-access (CDMA) systems, constrained tensor
modeling, multiple-antenna schemes, spatial multiplexing, spatial
spreading.

I. INTRODUCTION

I T is well known that the use of multiple antennas at both
the transmitter and receiver is promising since it potentially

provides increased spectral efficiencies compared to traditional
systems employing multiple antennas at the receiver only
[1]. In the context of current and upcoming wireless commu-
nication standards, the integration of multiple-antenna and
code-division multiple access (CDMA) technologies has been
the subject of several studies [2]. Spatial multiplexing strategies
in conjunction with CDMA is addressed in a few recent works
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[3]–[5] with focus on layered space-time processing. In [3],
the multiple transmit antennas are organized in groups and
a unique spreading code is allocated within the same group.
The separation of the different groups at the receiver is done
by using a layered space-time algorithm [6]. Focusing on
the downlink reception, [4] also considers the spatial reuse
of the spreading codes and proposes a chip-level equalizer
at the receiver to handle the loss of code orthogonality. A
space-time receiver for block-spread multiple-antenna CDMA
is proposed in [5]. In this case, block-despreading is used
prior to space-time filtering in order to eliminate multiuser
interference and reduce receiver complexity. On the other hand,
CDMA-based transmit diversity schemes have been proposed
earlier in [7] and [8] and recently in [9]. These methods, com-
monly called space-time spreading, are capable of providing
maximum transmit diversity gain without using extra spreading
codes and without an increased transmit power. However,
space-time spreading methods put more emphasis on diversity
than on multiple-access interference. A recent work [10] in-
vestigates the performance of a range of linear single-user and
multiuser detectors for multiple-antenna CDMA schemes with
space-time spreading. In practice, due to the joint presence
of multiple-access interference and time-dispersive multipath
propagation, the large number of parameters to be estimated at
the receiver (e.g., users’ multipath channels, received powers,
spreading codes) may require too much processing/training
overhead and degrade receiver performance.

In a seminal paper [11], the problem of uplink multiuser
detection/separation is linked to a parallel factor (PARAFAC)
tensor model. It is shown that each received signal sample
associated with a receive antenna, a symbol and a chip, can be
interpreted as an element of a three-way array, or third-order
tensor. Using this interpretation, [11] shows that the use of
tensor modeling allows the receiver to fully exploit three
forms of diversity (time, space, and code) for blind recov-
ering the transmitted symbols/channel/codes, thanks to the
powerful uniqueness property of this tensor model which is
not shared by matrix models. Generalizations of the classical
PARAFAC-based CDMA model were proposed in subsequent
works [12]–[16], under different assumptions concerning the
multipath propagation structure (e.g., including frequency-se-
lectivity and specular multipath). However, all these works are
limited to single-antenna transmissions.

The use of tensor decompositions for modeling multiple-
antenna transmissions is proposed in [17]–[20]. A multiantenna
scheme based on a tensor modeling is proposed in [17]. Despite
its diversity-rate flexibility and built-in identifiability, this
multiple-antenna scheme relies only on temporal spreading of
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the data streams (as in a conventional CDMA system). Since
there is no spatial spreading of the data streams across the
transmit antennas, no transmit spatial diversity is obtained. In
[18], a generalized tensor model is proposed for multiple-an-
tenna CDMA systems with blind detection. However, this
modeling approach only considers spatial multiplexing. In
summary, the common characteristic of the tensor modeling
approaches of [17] and [18] is that the number of data streams
are restricted to be equal to the number of transmit antennas.
The approach of [19] adds some flexibility at the transmitter
by allowing the number of data streams to be different from
the number of transmit antennas. As opposed to [17] and [18],
full spatial spreading of each data stream across the transmit
antennas is also permitted. It is shown that the corresponding
tensor model has a fixed constrained structure that uniquely
depends on the number of data streams and transmit antennas.

This paper presents a new modeling approach for uplink mul-
tiple-antenna CDMA schemes with blind multiuser detection.
A constrained third-order tensor decomposition is introduced
as a mathematical tool for modeling multiple-antenna CDMA
schemes with multiple spreading codes. We show that several
multiple-antenna schemes ranging from full transmit diversity
to full spatial multiplexing and using different patterns of spatial
reuse of the spreading codes can be modeled with the aid of two
constraint matrices formed by canonical vectors. Physically,
these matrices act as canonical allocation matrices defining the
allocation of users’ data streams and spreading codes to their
transmit antennas. The distinguishing features of the proposed
tensor model with respect to the existing tensor-based CDMA
models can be briefly summarized as follows.

• The constraints in the tensor model allow to cope with
multiple transmit antennas and spreading codes per user or
per data-stream, which provides an extension of [17]–[19]
where each data stream is associated with only one
spreading code.

• Several multiple-antenna schemes with varying degree of
spatial spreading, spatial multiplexing, and spreading code
reuse can be obtained by adjusting the constraint matrices
of the tensor signal model accordingly.

A design procedure for the canonical allocation matrices
leading to a unique blind symbol recovery (or, possibly, joint
blind symbol-code recovery) is proposed for deriving finite
sets of multiple-antenna schemes with a fixed number of
transmit antennas. Identifiability of the proposed tensor model
is discussed, and a blind joint detection receiver based on the al-
ternating least squares algorithm is considered for performance
evaluation of several multiple-antenna CDMA schemes.

It is worth mentioning that constrained tensor models has
been an active research topic in other disciplines such as chemo-
metrics [21]–[23]. Most of these works adopt a different inter-
pretation of the constrained structure, by considering Tucker
models [24] with constrained core tensor. Uniqueness is gener-
ally studied directly from the pattern of zeros of the core tensor.
The “PARALIND” model, recently proposed for data analysis
in the context of chemometrics problems [25], is probably the
most related to our tensor model. This model also makes use of
constraint matrices to model the dependence between columns
of component matrices.

This paper is organized as follows. After presenting the basic
notations used in this work, Section II defines the constrained
tensor decomposition. Section III describes the basic system
model. The proposed multiple-antenna CDMA model is pre-
sented in Section IV and linked to the constrained tensor de-
composition. In Section V, the structure of the canonical allo-
cation matrices of the tensor model is detailed and a design pro-
cedure for these matrices leading to a unique blind symbol re-
covery is described. In Section VI, some identifiability issues of
the proposed model are discussed, and a blind receiver using an
alternating least squares algorithm is proposed. Simulation re-
sults are presented in Section VII and the paper is concluded in
Section VIII.

Notations: Scalar variables are denoted by lower-case letters
, vectors are written as boldface lower-case

letters , matrices correspond to boldface
capitals , and tensors are written as calligraphic let-
ters . , and stand for transpose, inverse
and pseudoinverse of , respectively. denotes the inverse
of the transpose of . The operator forms a diagonal
matrix from its vector argument;
forms a block-diagonal matrix with matrix blocks;
forms a diagonal matrix holding the th row of on its main
diagonal, i.e., . The Kronecker and the
Khatri-Rao products are denoted by and , respectively

... (1)

with
.

II. CONSTRAINED TENSOR DECOMPOSITION

In this section, we formulate a constrained tensor decompo-
sition [14] which serves as the basic modeling tool for the con-
sidered multiple-antenna CDMA system. The link between this
decomposition and the physical parameters of our system model
is established in Section IV.

Definition: Let us consider a third-order tensor
, three component matrices

, and two constraint matrices
and . A constrained tensor decom-

position of with component combinations is defined in
scalar form as

(2)

where is an entry of

, are the
entries of the first-mode, second-mode, and third-mode com-
ponent matrices, respectively. Similarly, and
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are, respectively, the entries of the two con-
straint matrices. The columns of and are canonical vec-
tors1 of canonical bases

and , respectively. The two
constraint matrices define the component combination pattern
in the composition of the tensor. Otherwise stated, determines
the coupling between the columns of and while de-
termines the coupling between the columns of and .
It is assumed that and are both full rank matrices, i.e.,

and . Note that these assump-
tions mean that every canonical vector of the basis (re-
spectively, ) appears at least once as a column of (re-
spectively, ). We define as the number of com-
ponent combinations involving the th column of , i.e.,
the number of times that the th column of contributes in
the composition of the tensor . Similarly, is the
number of component combinations involving the th column
of . (respectively, ) corresponds to the number of 1’s
entries at the th (respectively, th) row of (respectively, ).
We have

(3)

where and are the com-
ponent combination vectors of matrices and , respec-
tively. These vectors satisfy the following constraint:

(4)

As will be shown later, (2) is useful for modeling multiple-an-
tenna CDMA systems with multiple spreading codes and data
streams per user.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider the uplink of a single cell synchronous multiple-
antenna CDMA system with active users and spreading factor

. The base-station receiver is equipped with antennas and
the th user transmits independent data streams using
antennas. Multiple spreading codes per user are allowed, and

denotes the number of spreading codes associated with the
th user. Each transmitted data stream contains symbols. The

wireless channel is assumed to be constant during symbol pe-
riods. Flat-fading and user-wise independent multipath propa-
gation is considered. The transmit parameter set

, utilized by the th user, as well as the number
of active users are assumed to be known to the base-sta-

tion receiver. Users’ spreading codes are symbol-periodic. We
either assume that the base station has perfect knowledge or
has no knowledge of these spreading codes. The “unknown”
spreading code assumption is valid in scenarii where multipath
propagation induces interchip interference (ICI). In this case,
the term “spreading code” corresponds to the effective spreading
code resulting from the convolution of the transmitted spreading

1A canonical vector � � is a unitary vector containing an element
equal to 1 in its �th position and 0’s elsewhere.

code with the multipath channel [26]. We simply adopt the term
“spreading code” throughout the paper for simplicity reasons.
We distinguish three different types of multiple-antenna CDMA
schemes covered by our modeling approach.

• Full spatial multiplexing: . Each data
stream is transmitted using a different transmit antenna and
a different spreading code (full code multiplexing).

• Full spatial spreading: . A single
data stream is fully spread over all the transmit antennas to
achieve spatial transmit diversity. In this case, the number
of used spreading codes may vary from one (full code
reuse) up to (full code multiplexing).

• Combined spreading and multiplexing:
. Each data stream is spread only across a subset

of available transmit antennas. Different data streams
are spread across nonoverlapping transmit antennas (no
antenna sharing between any two data streams). Combi-
nation of code reuse and code multiplexing is permitted in
this case.

We are mostly interested in combined spreading and multi-
plexing transmit schemes, since full multiplexing and spreading
can be considered as particular cases of the combined one. The
constrained tensor modeling approach covers a wide variety
of combined transmit schemes depending on the chosen con-
strained structure of the model. This is a key feature of our
modeling approach as will be clarified later.

IV. TENSOR SIGNAL MODEL

For the multiple-antenna CDMA system described in the pre-
vious section, we formulate a new tensor model for the received
signal, based on the constrained tensor decomposition defined
in Section II. We start with a single-user model for simplicity
reasons. Let be the spatial fading channel gain between
the th transmit antenna and the th receive antenna,

be the th symbol of the th data stream, and
be the th element of the th spreading code. Let us define

, and as the channel,
symbol, and code matrices, where

, and are, respectively, the entries of these
matrices. We can view the discrete-time baseband version of the
noise-free received signal at the th symbol period, th chip, and

th receive antenna as a third-order tensor with
the th element defined as .
We propose the following input-output model for the considered
multiple-antenna CDMA system:

(5)

where is the th element
of the third-order tensor representing the effec-
tive (precoded) transmitted signal. We treat as the output of a
constrained space-time spreading operation, which is modeled
by the following constrained tensorial transformation:

(6)
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where

(7)

is the th element of . This matrix defines the
allocation of data streams and spreading codes to the th
transmit antenna. Let us define

as the stream-to-code allocation matrix. This matrix synthesizes
the constrained structure of the model. It is given by the inner
product of two canonical allocation matrices and

, respectively. The use of the terminology “canon-
ical allocation” for and is due to the fact that both matrices
are composed of canonical vectors controlling the coupling of

data streams and spreading codes to transmit antennas,
respectively. can be viewed as the stream-to-antenna alloca-
tion matrix and as the code-to-antenna allocation matrix.

The physical interpretation of (6) is that each data symbol
is spread up to times using the spreading codes .
Each spread symbol is then loaded at the th transmit
antenna. Depending on the structure of the ’s, the same
spread symbol may simultaneously be loaded at several
transmit antennas in order to benefit from transmit spatial diver-
sity. From (5) and (6), we can express the received signal as

(8)

By comparing (2) and (8), we can deduce the following corre-
spondences:

(9)

A. Multiuser Signal Model

Some definitions are now introduced, which allow us to view
(8) also as a multiuser signal model. In the multiuser case,

, and
denote, respectively, the total number of data streams, spreading
codes, and transmit antennas considered, i.e., summed over all
the users. In this case, and are interpreted as aggre-
gate channel, symbol, and code matrices concatenating ma-
trix-blocks, i.e.,

(10)

where ,

and define the entries of the th user

channel, symbol and code matrices, respectively. We can also
view the aggregate canonical allocation matrices as a block-di-
agonal concatenation of matrix-blocks

(11)

Fig. 1. Uplink model of the proposed multiple-antenna CDMA system.

where

and de-

fine the entries of the th user allocation matrices. Similarly, the
aggregate coupling matrix is defined as

(12)

Fig. 1 depicts the proposed multiple-antenna CDMA model.

B. Matrix Representations

The received signal model (8) can alternatively be expressed
in equivalent matrix forms. Let us define col-
lecting the chips of the transmitted symbols associated
with the th receive antenna. can be factored in terms of

, and as [15]

(13)

We can also define two other matrices col-
lecting the received signal samples over chips and re-
ceive antennas associated with the th transmitted symbol, and

collecting the received signal samples over
symbol periods and receive antennas associated with the th
chip of the spreading code. These matrices can be, respectively,
factored as

(14)

(15)

and we have .
Using the tensorial terminology,

, and are called the first-,
second-, and third-mode matrix-slices, obtained by “slicing”
the tensor along its first, second, and third di-
mensions, respectively [27]. Fig. 2 illustrates the decomposition
of as a function of the aggregate symbol/code/channel ma-
trices and the canonical allocation matrices .
Let us define the three matrices

, and
concatenating the

third-mode, second-mode, and first-mode slices of the re-
ceived signal tensor, respectively, so that
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Fig. 2. Constrained decomposition of the received signal tensor (�th matrix
slice of the third-mode).

. These matrices
are usually called the “unfolded” representations of the signal
tensor [27]. Using (1), we get [15]

(16)

Relation to the PARAFAC Model of [11]: The parallel can
be made by assuming . In this
case, the correspondences between both tensor signal models
are , and we have ,
meaning that the noiseless received signal model reduces to a
single-antenna CDMA tensor model [11]

(17)

Therefore, the proposed model can be viewed as a generaliza-
tion of the one in [11], which is restricted to the single-antenna
CDMA case. The introduction of and gives flexibility (and
more degrees of freedom) to our tensor signal modeling, in the
sense that it models CDMA systems with multiple transmit an-
tennas, multiple data streams and multiple spreading codes per
user.

Remark 1: This constrained tensor model has properties sim-
ilar to those of the tensor model proposed in [12] for blind
single-antenna CDMA systems with large delay spread. This
model can be also viewed as a constrained tensor model where
the constrained structure is fixed and intrinsic to the propagation
channel (and not to the multiple-antenna transmitter design as
in our context).

Illustrative Example: In order to illustrate the physical
meaning of the canonical allocation matrices, let us consider
the simple example of a single-user multiple-antenna system

. Assume that the serial input stream is divided into
parallel data streams transmitted by transmit

antennas using orthogonal spreading codes. Suppose
that the canonical allocation scheme is defined by the following
constraint matrices:

(18)

The unitary entries in the first row of the stream-to-antenna allo-
cation matrix means that the first data stream is spread across
the first and second transmit antennas. Likewise, the second row
of shows that the second data stream is spread across the third
and fourth transmit antennas. Now, looking at the code-to-an-
tenna matrix , we can see that the first two antennas share the

same spreading code for transmission while the third and fourth
transmit antennas are associated with different spreading codes.
Several canonical allocation structures with different allocation
patterns involving data streams and spreading codes for an arbi-
trary number of transmit antennas can be accommodated in our
tensor model. However, the question is whether or not the chosen
structure guarantees the uniqueness of the parameters of interest
which are the symbol matrix and, possibly, the code matrix. In
the next section, the design of the allocation matrices is studied.

V. DESIGN OF THE CANONICAL ALLOCATION MATRICES

In this section, we study the design of the canonical alloca-
tion matrices for ensuring blind symbol recovery (i.e., unique-
ness of ). The construction of the canonical allocation matrices
satisfying a proposed design criterion is presented. Then, we de-
scribe a procedure for designing and which allows us to
derive a family of multiple-antenna schemes for a fixed number
of transmit antennas.

A. Generating Vectors

For simplicity reasons, we omit the user-dependent index in
the design of the canonical allocation matrices by considering a
single-user system. Since the design criterion for these matrices
is exactly the same for all the users, we can bypass the user-
dependent notation without loss of generality while simplifying
the notation.

We propose to parameterize the two canonical allo-
cation matrices by their generating vectors. Let us de-
fine and , where

, as the generating vectors of and
, respectively. These vectors completely characterize the

canonical allocation structure in the considered multiple-an-
tenna system. Note the following:

• is the th spatial spreading factor, and denotes the
number of transmit antennas associated with the th data
stream;

• is the th code reuse factor, and denotes the number
of transmit antennas using the th spreading code of the
th data stream, .

The generating vectors and correspond to those defined
in (3) for the constrained tensor decomposition. By analogy
with (4), we have the following correspondences

and , yielding the following
constraint:

(19)

i.e., the sum of the elements of is equal to
that of which is always equal to the number
of transmit antennas.

B. Design Criterion

We borrow some basic concepts from partition theory [28] in
order to design the canonical allocation matrices. Specifically,
the generating vectors and are interpreted here as partitions
of size and dimensions and , respectively. The fact that
and are partitions of the same size is due to (19). Physically,
is a partition of transmit antennas into subsets transmitting
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different data streams (i.e., the th data stream is spread across
antennas). Likewise, is a partition of transmit antennas

into subsets, each one of which is associated with a different
code (i.e., the th code is reused by antennas). We suppose
that and satisfy the following design criterion:

(20)

where is the dimension of the th subpartition
of , with . corre-

sponds to the number of times the th spreading code is reused
within the th antenna set, while corresponds to the number
of different spreading codes within the th antenna set.

Based on (20), we propose the following partitioned construc-
tion for and

(21)

and

and (22)

where is an -dimensional vector of ones,
and . Note that is the canonical allocation
matrix associated with the th transmitted data stream, and

is the canonical allocation matrix associated with the th
spreading code used by the th data stream.

Practical Implications of the Proposed Design Criterion:
The proposed design criterion for determining the structure
of and from and , respectively, has some practical
implications. First, we can observe that the spatial spreading
of the data streams and the reuse of the spreading codes are
restricted to adjacent transmit antennas only. This restriction
can easily be deduced from the repetition pattern of identical
canonical vectors in these matrices. Another implication of this
construction is that different data streams cannot be associated
with the same spreading code for transmission. In other words,
spreading code reuse only takes place across the transmit
antennas transmitting the same data stream.

Constructing and according to the design crite-
rion (20), we can verify (see the Appendix) that any and
satisfying the model are related to and , respectively, by

(23)

where is a nonsingular transformation ambi-
guity matrix, is a permutation matrix and

is a block-diagonal permutation matrix. In other words,
the symbol matrix is unique up to column permutation and
scaling while the code matrix is unique up to a multiplication
by a nonsingular block-diagonal matrix and column permuta-
tion. It is worth noting that the simultaneous uniqueness of

TABLE I
SET OF SCHEMES FOR� � �

and up to permutation and scaling arises in a particular case
of (20) where and .

Remark 2: The uniqueness of is the major concern in this
paper, since our final goal is the blind recovery of the transmitted
data streams. On the other hand, the uniqueness of is not
required, since we are interested in a “direct” detection without
using any knowledge about the channel.

C. Design Procedure

We propose a systematic procedure for building the canonical
allocation matrices and in (21)–(22) based only on the
generating vectors and , according to the following steps:

i) a choice of is made for a fixed number of transmit
antennas (partition size) and a fixed number of input
data streams (partition dimension);

ii) for every , a sub-partition of size
and dimension is formed so that (20) is satisfied

and . The value of , i.e., the number
of spreading codes for the th data stream, is a design
parameter;

iii) and are built according to (21)–(22).

D. Set of Canonical Allocation Schemes

More than one choice for may be possible for a fixed .
This is due to the fact that more than one way of choosing a
subpartition from may be possible without
affecting the uniqueness property of the model. Each choice
will lead to a different allocation structure .
Following the proposed design procedure, a family of mul-
tiple-antenna CDMA schemes can be derived from the different
possible choices of and . Table I shows the set of schemes
for transmit antennas. We assume that ,
and . This
assumption eliminates equivalent (redundant) schemes. For
example, an allocation scheme with and
is considered equivalent to the one with and

. Both schemes have the same spreading and
multiplexing pattern (the order of association of data streams
and spreading codes with the transmit antennas is irrelevant),
and have the same uniqueness property [both schemes satisfy
(20)]. In this table, the different schemes are listed according
to increasing values of and .

It can be seen from this table that 14 allocation schemes are
possible. Note that for some values of and , two schemes
exist. Let us consider the case , where we have
two possible choices. For , antennas 1, 2, and 3 use
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the same spreading code, which is different from the one used
by antenna 4. On the other hand, for each spreading
code is used twice by two different antenna sets. Both are full
spatial spreading schemes, but having different code reuse
patterns. For , we have two feasible schemes,
and they correspond to those satisfying . For

and we also have two schemes. Note that the basic
difference between the schemes and

is on the code reuse/multiplexing pattern, the spatial
spreading pattern being the same.

E. Discussion

In practice, and can be designed based on practical re-
strictions such as the number of available spreading codes and
transmit antennas, data-rate, and diversity requirements. One
way of optimizing the allocation matrices is to take advantage of
a priori channel state information at the transmitter. Since our
design procedure allows thedeterminationofafinite-set, or code-
book, of feasible allocation schemes, limited feedback precoding
methods [29], [30] can be used to select the best pair of constraint
matrices at the transmitter. Although interesting, performance-
oriented optimization of and is a topic beyond the scope
of this paper and will be elaborated in the future. Here, we only
focus on uniqueness aspects for designing the transmit schemes.
However, we conjecture that the optimization of the allocation
structure can allow substantial performance gains compared to
the nonoptimized case. This issue deserves more investigation.

VI. BLIND RECEIVER

As far as multiuser separation/detection is concerned, the goal
of the base-station receiver is to separate the users’ transmis-
sions (symbols/channels/codes) while recovering the data trans-
mitted by each user. In this paper, we consider a joint blind pro-
cessing without using training sequences or resorting to a priori
channel knowledge. In this case, model identifiability is a fun-
damental issue to be considered. This issue is now studied.

A. Identifiability

Let us rewrite the three unfolded matrices of the received
signal (16) in the following equivalent manner:

(24)

where

(25)

are the three constrained Khatri-Rao factorizations of the re-
ceived signal model.

Theorem (Identifiability): The identifiability of the con-
strained tensor model (8) in the least square (LS) sense requires
that , and are full column-rank,
which implies

and (26)

Proof: The proof follows the same reasoning as the one
given in [31] for the PARAFAC model. From (24), is identi-
fiable in the LS sense if and only if admits a unique
left pseudo-inverse, i.e., if it does not exist belonging
to the kernel such that , i.e.,

. From the rank theorem, we have

which means that is full column-rank. Moreover, as we
have , it follows that ,
i.e., is tall. Applying the same reasoning to and in

and , we obtain the
inequalities and , respectively.

From (26), the following corollaries can be obtained.
1) For (equal number of data streams, spreading

codes and transmit antennas), the constrained tensor de-
composition reduces to the PARAFAC decomposition of

factors, and (26) is equivalent to condition [31]

2) For (equal number of data streams
and spreading codes) we can decouple (26) into the two
following conditions:

and

3) For (equal number of spreading
codes and transmit antennas), we obtain the two following
conditions:

and

B. Discussion on the Identifiability Conditions

1) Interpretation of (26): These identifiability conditions re-
late all the system parameters of interest, which belong either to
the transmitted or to the received signal dimensions. The trans-
mitted signal dimensions are while the receiver di-
mensions are . These conditions can be interpreted
in the following manner. An increase in a transmitted signal di-
mension (e.g., data stream, spreading code, or transmit antenna
dimension), representing an increase in the number of system
parameters to be identified at the receiver, must be compen-
sated by an increase in the corresponding received signal di-
mension(s). As a consequence of tensor modeling, an identifi-
ability tradeoff arises in (26). For instance, an increase in the
number of data streams can be compensated by increasing
the number of receive antennas or the spreading factor , or
both, accordingly. A similar reasoning applies when the number
of spreading codes or transmit antennas is increased.

2) -Rank Based Conditions: Model (16) can be viewed
as a third-order PARAFAC model with three equivalent factor
matrices and . Due to the presence of sets
of identical columns in and , and consequently in and ,
the identifiability result of [11], which is based on the concept
of -rank, does not apply to this constrained tensor model. This
is due to the fact that and have -rank equal to one, and the
sufficient condition of [11] fails (see [11] for further details).
The same comment is valid for the PARALIND model of [12]
and [25], which exhibits similar constrained structure.
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C. Receiver Algorithm

Now, we present the proposed blind receiver algorithm for
symbol recovery. In order to exploit the tensor modeling of the
received signal, we make use of the alternating least squares
(ALS) algorithm [11], [21], which is the classical solution for
estimating the component matrices of a tensor model. The ALS
algorithm consists in fitting a third-order tensor model to the re-
ceived data by alternatively minimizing three LS criteria. In our
case, the component matrices to be estimated are the symbol,
code and channel matrices, while the received data correspond
to the noisy signal measured with the receiver antennas.

The ALS algorithm makes use of the three unfolded ma-
trices representing the received signal in (24). We assume that
the identifiability conditions (26) are fulfilled. At each step of
this algorithm, one component matrix is estimated in the LS
sense, while the two others are fixed to their values obtained
at the two previous steps. and are known matrices and
are fixed during the iterative estimation process. At the first it-
eration, and are randomly initialized. Assuming un-
known spreading codes, the ALS algorithm is composed of three
estimation steps.

Define , as a noisy version of ,
where is an additive complex-valued white Gaussian noise
matrix.

1) Set ;
Randomly initialize and ;

2) ;
3) Using , find an LS estimate of

4) Using , find an LS estimate of :

5) Using , find an LS estimate of :

6) Repeat steps 2–5 until convergence.
The convergence of the algorithm at the th iteration is declared
when the error between the true received signal tensor and its
version reconstructed from the estimated component matrices
does not significantly change between iterations and . The
conditional update of each matrix may either improve or main-
tain but cannot worsen the current fit. It is worth noting, how-
ever, that the ALS algorithm strongly depends on the initializa-
tion, and convergence to local minima can occur. Specifically,
the convergence of this algorithm can sometimes fall in regions
of “swamps” during which the convergence speed is very small
and the error between two consecutive iterations does not sig-
nificantly decrease [21].

A more efficient initialization strategy consists in first ob-
taining an estimation of the column space of and using
successive singular value decompositions of

and , respectively. The estimated
matrices are linked to the true ones by nonsingular nonadmissible

transformation matrices. They can, however, be used as a starting
point of the ALS algorithm. This initialization procedure will
probably be more efficient than a random initialization. Conver-
gence of the estimates is rapidly achieved when the spreading
code matrix is known at the receiver [17]. In this case, the first
estimation step is skipped. Assuming known spreading codes,
we have observed that the ALS algorithm usually converges to
the global minimum within 15–30 iterations for a SNR of 20 dB.
In contrast, when considering unknown spreading codes, the
convergence can be much slower. It can take hundreds or even
thousands of iterations in worst-case situations.

Provided that (20) is satisfied, the ALS algorithm will pro-
vide a unique estimation of the symbol matrix up to column
permutation and scaling ambiguities. In order to eliminate the
scaling ambiguity, we assume that the first transmitted symbol
of each data stream is equal to one, i.e., . An-
other approach to eliminate such a scaling ambiguity consists in
using differential modulation/detection. Permutation ambiguity
is only present when is unknown. In this case, we resort to a
greedy least squares procedure for matching the columns of
and , as in [11].

VII. PERFORMANCE EVALUATION

In this section, computer simulation results illustrate the
performance of the proposed blind multiple-antenna CDMA
schemes using different allocation structures for and

. The ALS algorithm described in the previous section is used
as the multiuser detection receiver. Two different detection
assumptions are considered for performance evaluation.

• Code-assisted detection: The spreading code matrix
is assumed to be known at the receiver. Hadamard
spreading codes are used in this case.

• Code-blind detection: The spreading code matrix is as-
sumed to be unknown at the receiver as a consequence of
multipath delay propagation. The spreading code matrix is
generated by convolving the Hadamard code with the
considered multipath delay channel [26].

Performance evaluation is based on average bit-error-rate (BER)
versus signal-to-noise ratio (SNR) plots, obtained by means
of Monte Carlo runs. The number of runs vary from 1000 to
5000 depending on the simulated SNR value. The BER curves
represent the performance averaged on the transmitted data
streams, except in some figures, where we plot the individual
performance of each data stream for a more detailed analysis.
At each run, the additive noise power is generated according to
the SNR value given by , the
spatial channel gains are drawn from an i.i.d. complex-valued
Gaussian generator while the transmitted symbols are drawn
from a pseudorandom quaternary phase shift keying (QPSK)
sequence.

Our simulations focus on challenging system configurations
with a small number of receive antennas and short received
data blocks, which is more attractive in practice. We assume

and throughout the simulations, unless other-
wise stated. The most relevant parameters to be considered here
are the generating vectors and of the allocation structure,
defining the spatial spreading and code reuse factors, respec-
tively. In all the simulations, the transmit parameters are shown
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Fig. 3. Average performance of three different transmit schemes with� � �.

at the top of each figure. We recall that for given and , the
corresponding values of and can be deduced, as shown in
Table I for .

It is worth mentioning that our simulation results do not
distinguish between the detection of user signals with

transmit antennas, data streams, and spreading
codes each, or the detection of a single-user signal with

antennas, data
streams and spreading codes. Since the ALS
receiver is based on a joint multiuser/multistream detection
approach, distinguishing between both cases is not relevant for
purposes of performance evaluation.

A. Performance of Different Schemes ( and )

First, we consider the code-assisted detection and investigate
the performance of some multiple-antenna CDMA schemes for

and transmit antennas. Fig. 3 depicts the per-
formance of three different schemes for . Performance
improves when going from full spatial multiplexing

to full spatial spreading with code reuse .
Note that such a performance gain comes at the expense of a
reduction of the spectral efficiency by a factor of two. Spatial
spreading with code multiplexing offers
nearly the same average performance as spatial spreading with
code reuse. The use of code multiplexing in place of code reuse
can be more attractive in scenarii where the spatial channels
from the different transmit antennas are correlated and transmit
spatial signatures are poor [32]. We shall come back to this issue
latter. Fig. 4 shows the performance of four different schemes
for , considering and . The spreading
factor is adjusted to keep the spectral efficiency constant (except
for where spectral efficiency is divided by two). A
variable degree of spatial diversity is afforded by the different
choices of and .

B. Influence of the Code Reuse Pattern (Choice of )

In Fig. 5, we compare the performance of two different
schemes combining spatial spreading and spatial multiplexing

Fig. 4. Average performance of 4 different transmit schemes with� � �.

Fig. 5. Individual data stream performance for two different transmit schemes
with � � � and different choices of ���.

for . Both schemes have the same spatial spreading
pattern, the difference being on the code reuse/multiplexing
pattern. In contrast to previous figures, we plot the individual
performance for each data stream in order to verify the influ-
ence of code reuse/multiplexing. It can be concluded that the
two transmit schemes mainly differ in the performance of the
second data stream, which is significantly better as code multi-
plexing is used. This result confirms that using different codes
for transmitting the same data stream across different antennas
allows the receiver to use both spatial and code information to
distinguish the transmitted substreams, corroborating with [2]
and [32].

C. Performance Over Spatially-Correlated Channel

Now, we are interested in investigating the impact of using
different codes for transmitting the same data stream over a
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Fig. 6. Average performance of four different transmit schemes with� � �

over a channel with transmit spatial correlation.

practical (nonideal) channel with transmit correlation. We as-
sume that only the transmit antennas are correlated, which can
be a reasonable assumption in uplink transmission with poor
scattering around the transmitter. At the base-station receiver,
we assume sufficient scattering so that the receive antennas
are uncorrelated. We adopt the following channel model with
transmit correlation [33]:

where is a matrix of complex i.i.d. Gaussian variables of
unity variance and the transmit covariance matrix. In this ex-
periment, we assume and is given by the matrix [34]

We consider four allocation schemes having different spatial
spreading/multiplexing and code reuse/multiplexing patterns.
We focus on the isolated performance for each data stream. Ac-
cording to Fig. 6, for a fixed choice of and , better results are
obtained when full code multiplexing is used .
Indeed, keeping and using in place of

, a significant performance improvement is obtained
at the expense of using twice the number of spreading codes.
The same comment is valid for . Note that, when

, the performance tends to saturate at high SNR
as a consequence of transmit spatial correlation. These results
show that the choice of the generating vectors is important in
practical scenarii.

D. Code-Blind Versus Code-Assisted Detection

In all the previously obtained results, we have considered
code-assisted detection by assuming perfectly orthogonal
spreading codes (no interchip interference). The next results

Fig. 7. Code-assisted versus code-blind detection with� � �.

consider the more challenging code-blind detection, where
the (effective) spreading codes are unknown to the receiver
due to multipath propagation. The effective spreading codes
are generated by convolving an orthogonal Hadamard code of
length chips with a two-tap multipath channel, the
delay between the two taps being equal to two chip periods.
At each run, these multipath components are drawn from an
i.i.d. complex-valued Gaussian generator. Fig. 7 compares the
performance of code-blind and code-assisted detection. In this
case we use . We can observe a performance
loss of the code-blind receiver with respect to the code-assisted
one. The performance gap is attributed, in part, to the presence
of inter-chip interference and the lack of knowledge of the
code matrix which induces more parameters to be estimated by
means of the ALS algorithm.

E. Comparison With the Optimum ZF Receiver

As a reference for comparison, we now consider the perfor-
mance of the zero forcing (ZF) receiver with perfect knowledge
of the channel and code matrices. The ZF receiver is compared
with the channel- and code-blind ALS receiver. Using our nota-
tion, the ZF receiver consists in a single-step estimation of the
symbol matrix given by

and being perfectly known. We consider two allocation
schemes with and .
It can be seen from Fig. 8 that the gap between ALS and ZF is
around 6 dB in terms of SNR, for a BER equal to . We
can observe that the same performance improvement is obtained
for both ZF and ALS when is increased.

VIII. CONCLUSION AND PERSPECTIVES

This paper has proposed a new constrained tensor model for
modeling multiple-antenna CDMA schemes with blind detec-
tion. The two constraint matrices of the tensor model (called
allocation matrices) control the spatial spreading of the data
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Fig. 8. Comparison between code-blind ALS and ZF receivers (with perfect
channel/code knowledge for the ZF receiver).

streams and the spatial reuse of the spreading codes, respec-
tively. By parameterizing these two allocation matrices by their
corresponding generating vectors, we have presented a design
procedure for systematically deriving a set of transmit schemes
with guaranteed blind symbol recovery. The BER performance
of several transmit schemes has been evaluated using the ALS
algorithm. Simulation results have shown that remarkable per-
formance is obtained with only two receive antennas and short
data blocks. We emphasize that the introduction of the two allo-
cation matrices into the multiple-antenna CDMA model can be
further exploited. When some form of channel state information
is available at the transmitter, the design of performance-opti-
mized allocation matrices is an interesting issue to be investi-
gated. For a fixed number of transmit antennas, we could
resort to limited feedback precoding [29], [30] to properly se-
lect the two allocation matrices from the finite-set of feasible
choices (cf. Table I for ).

APPENDIX

We demonstrate that the design criterion (20), which results in
a partitioned structure for the canonical allocation matrices ac-
cording to (21)–(22), leads to the uniqueness of up to column
permutation and scaling while the uniqueness of exists up
to multiplication by a nonsingular block-diagonal matrix and a
block-diagonal permutation matrix.

Let us define and
with

, as the partitioned spreading code matrix. Let
us also define as the partitioned
channel matrix. Based on these definitions, we can rewrite (13)
in terms of this partitioning as

(27)

Due to the canonical structure of and defined in
(21)–(22), it follows that is a row-wise block-diagonal
matrix (it has only a single nonzero element per column), the
blocks of which are row-vectors

. . .

where

with . Let be non-
singular transformation matrices. Inserting and
in (27) yields

(28)

First, note that acts over the rows of , while acts
over the columns of , respectively. It can be easily checked
that only preserves the row-wise diagonal structure of
if it is a diagonal matrix or a row-permutation of it, which leads
to the form (23) of . On the other hand, any nonsingular ma-
trix having a block-diagonal structure with blocks

, preserves the structure of
which implies a transformational ambiguity over the sets of

columns of . Note also that the blocks
can be arbitrarily permuted without changing the

pattern of zeros of , which leads to the form (23) of .
The block-diagonal transformational ambiguity matrix

exists when (more
spreading codes than data streams). In the particular case

(one-to-one correspondence between spreading codes
and data streams) with is reduced
to a diagonal matrix and the joint uniqueness of and is
achieved.
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