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Khaled Ardah, Gábor Fodor, Yuri C. B. Silva, Walter C. Freitas Jr., and André L. F. de Almeida

Abstract—Hybrid analog-digital (HAD) beamforming archi-
tectures have been proposed to facilitate the practical imple-
mentation of massive multiple-input multiple-output (MIMO)
systems by reducing the number of employed radio frequency
chains. While most prior studies have aimed to maximize spectral
efficiency (SE), the present paper proposes a two-stage HAD
beamforming design for multi-user MIMO systems that can be
used to maximize either the system’s overall energy efficiency
(EE) or SE. This problem is nonconvex and NP-hard due to the
joint optimization between the analog and digital domains and
the constant modulus constraints required by the analog domain.
To address this problem, we propose a decoupled two-stage
design wherein the first stage, the analog beamforming parts are
updated, which are then taken into account in the second stage
to design the digital beamforming parts to maximize the system’s
EE or SE. We consider two widely-used HAD beamforming
techniques that utilize either fully-connected (FC) or partially-
connected (PC) architectures employing variable phase-shifters.
Using the most recently available data for the circuitry power
consumption of the components, we compare the performance of
these two HAD architectures with that of the fully-digital (FD)
architecture in terms of the total circuitry power consumption,
and achieved SE and EE. We find that there is a certain
number of users above which the FC architecture has higher
circuitry power consumption than the FD counterpart, in contrast
to the PC architecture that always has lower circuitry power
consumption. More importantly, our results reveal, contrary to
the common opinion, that depending on the circuitry parameters
the FD architecture may achieve not only higher SE, but also
higher EE than the HAD architectures.

Index Terms—Hybrid analog-digital, MIMO, spectral/energy
efficiency maximization.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) communi-
cation is considered one of the key techniques for meeting
the ambitious goal of 1000-fold increase on area spectral
efficiency of 5G systems [1], [2]. However, when the number
of antenna elements grows large, the current fully digital (FD)
implementation of MIMO processing, which dedicates one
radio frequency (RF) chain to each antenna, is prohibitive due
to the associated high cost, complexity, and circuitry power
consumption. Hybrid analog-digital (HAD) implementation of
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MIMO processing is seen as a possible solution to realize
MIMO systems in practice [3]. With the HAD system, the
beamforming matrix is divided into a high-dimensional analog
beamforming (ABF) part that is realized, for example, by
phase-shifters (PSs) [4], [5] and/or switches [6], [7] and a
low-dimensional digital beamforming (DBF) part. In this way,
the number of RF chains can be reduced to equal the number
of transmitted/received data streams [4], which is, generally,
much lower than the number of antenna elements.

Initial works on HAD beamforming design [4]–[7] focused
on maximizing the system’s spectral efficiency (SE), which
measures the number of bits/sec/Hz that can be reliability
transmitted. Furthermore, energy efficiency (EE) measures
the number of bits/sec/Hz that can be transmitted per Joule
has been recognized as an important performance metric for
future green 5G networks [2]. In this paper, we consider
a multiuser MIMO downlink system model and propose an
HAD beamforming design algorithm tackling both EE and SE
maximization.

The HAD beamforming design is, generally, a nontrivial
task, mainly due to the joint optimization of the analog and
digital parts and the nonconvex constraints that arise from
the analog part optimization. These involve, for example,
constant modulus constraints required by PSs [4] or binary
constraints required by switches [7]. Therefore, a sub-optimal
approach is widely adopted in practice [4]–[7] by decoupling
the optimization of the analog and digital parts and treating
them separately. In [4], for instance, the ABF matrix, real-
ized using a network of PSs, is updated from the channel’s
steering vectors, which naturally admit the constant modulus
constraints, using the orthogonal matching pursuit technique.
In [7], the ABF matrix, realized using a network of switches, is
updated using the cross-entropy machine-learning technique.
In [8], we recently proposed a unified analog beamforming
design algorithm that is valid for both PS-based or switch-
based architectures, which updates the analog matrices such
that the equivalent channel’s capacity is maximized. On the
other hand, classical beamforming design methods like block
diagonalization (BD) and zero-forcing (ZF), for the multiuser
scenarios, or maximum ratio transmission (MRT), for the
single-user scenarios, can be used directly to update the DBF
part considering the resulting equivalent channels [4], [5], [8].

A. Related Works

In the past few years, several EE maximization beamform-
ing design algorithms for HAD systems have been proposed
[9]–[12]. In [9], the authors consider a fully-connected archi-
tecture and propose an algorithm that jointly optimizes the
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transmit power and the number of active RF chains using
a mixed-integer fractional technique. In [10], the authors
consider fully-connected and partially-connected architectures
and propose an EE maximization algorithm, in which both the
analog and digital parts are updated based on the alternating
direction method of multipliers technique. In [11], the authors
consider a partially-connected architecture, where the analog
part is updated element-wise to minimize the interference-
leakage between its sub-blocks and the digital part is then
updated to maximize the EE based on the alternating optimiza-
tion technique. However, both algorithms [10], [11] consider
a single-user scenario and are computationally complex, es-
pecially with large-scale systems, due to their iterative nature.
By contrast, the authors in [12] consider a fully-connected
architecture and propose a low-complexity beamforming de-
sign to maximize the EE, again for the single-user scenarios,
using the singular value decomposition (SVD) technique and a
water-filling-like power allocation method. Assuming that the
optimal FD beamformers for maximizing the system SE or EE
are known a priori, the authors in [13], [14] propose n HAD
beamforming design, where the problem is formulated as n
Euclidean norm-minimization between the HAD beamformers
and the given FD beamformers. Meanwhile, asymptotic SE
and EE performance analysis for multi-user HAD multiple-
input and single-output (MISO) systems operating with ideal
and quantized phase shifters have been investigated in [15],
wherein the ABF part is simply updated from the phase
angles of users’ channels, while the DBF is updated using
the classical ZF technique.

Considering the cooperative multi-cell multi-user HAD
MISO systems, the authors in [16] propose an optimization
problem with the objective of maximizing the system EE by
jointly solving the HAD transmit beamforming and the user-
to-BS association problems, wherein the former is solved using
the Eigen beamforming algorithm and the latter is solved using
a Lagrangian approach. Meanwhile, the authors in [17] con-
sider the EE maximization problem for multi-user HAD MISO
system and propose an iterative approach, where the ABF and
the DBF parts are updated iteratively using convex quadrat-
ically constrained quadratic program problem formulations.
HAD beamforming systems have been also investigated for
energy-harvesting design in [18], where the authors consider
an analog-only transmitter with multi antenna array, single
RF-chain and a single-antenna user to investigate the channel
estimation problem and the optimal average harvested energy
at the receiver under phase shifter impairments and channel
estimation errors.

Furthermore, the works of [19], [20] approach the EE
maximization problem by formulating the analog/digital beam-
forming design problem to minimize the total transmit power
subject to some quality-of-service constraints; in [19] for
single-cell scenarios and in [20] for multicell scenarios. Con-
sidering more practical systems, the authors in [21] propose
an EE maximization algorithm that takes into account the
non-ideal settings of the power amplifiers. It is worth noting
that if the analog and digital parts are decoupled, as with
all the above proposals, the conventional EE maximization
algorithms proposed for FD MIMO systems can be readily

used to optimize the digital part, using, for example, the
algorithm proposed in [22].

B. Contributions

Unlike the works discussed above, the present paper consid-
ers a multiuser MIMO downlink system and proposes a two-
stage HAD beamforming design approach tackling both SE
and EE maximization, while taking into account the hardware
constraints and realistic circuitry power consumption. The
main contributions of this paper are summarized as follows.
• At first, we show that, based on the most recently avail-

able data for the circuitry energy consumption of PSs and
other circuitry components, there is a certain number of
users threshold above which the FD beamforming archi-
tecture has lower circuitry power consumption and higher
EE than the fully-connected and partially-connected hy-
brid analog-digital beamforming architectures.

• We propose, differently from our work in [8], an iterative
ABF design algorithm, called ARAB, with the objective
of maximizing the EE based on an alternating optimiza-
tion technique. The ARAB algorithm is guaranteed to
converge monotonically to a local stationary point, but
not necessarily to the global optimum.

• We propose a transmit DBF design algorithm, where the
beamforming directions are first updated using the well-
known BD approach [23], [24] and the power alloca-
tion vector, unlike [8], is updated with the objective of
maximizing the EE, for which a new power allocation
algorithm is proposed.

• We consider both the fully-connected [4] and the
partially-connected [5] architectures, where the analog
part is realized using a network of PSs, and compare
their performance in terms of the achieved SE and EE.
Unlike [25]–[27], our analysis is done when the HAD
beamforming matrices are designed using both the EE
and SE maximization approaches, thus, we provide more
insights into their true EE and SE.

We show that, based on the most recently available data
for the energy consumption of PSs and other circuitry com-
ponents, the fully-connected architecture based on the high-
resolution PSs actually has higher circuitry power consumption
than the FD counterpart if the number of users exceeds a
certain threshold given by (9). Thus, in such scenarios, the
FD structures are shown to achieve higher EE. By contrast,
the partially-connected architecture always has lower circuitry
power consumption than the FD and the fully-connected
architectures, as given by (10). However, due to the severe
degradation on its degrees-of-freedom, we found that it can
still achieve not only lower SE but also lower EE than both
architectures in some multiuser scenarios. Further, we show
that the EE maximization approach is a more appropriate
beamforming design, as it provides a better trade-off between
maximizing the SE and EE and minimizing the transmit power.

C. Paper Organization and Notation

The rest of this paper is organized as follows. Section II
presents the system and power consumption models. Section
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III formulates the EE-Maximization problem. In Sections IV
and V, we present our proposed ABF and DBF design algo-
rithms, respectively, for EE and SE maximization. In Section
VI, the computational complexity of the proposed algorithms
is analyzed. Next, we show simulation results in Section VII
and finally conclude the paper in Section VIII.

Notation: Scalars are denoted by single letters in italic type,
while matrices/vectors are denoted by boldface letters. The
operations (·)H, (·)T, (·)−1, ‖ · ‖, log(·), and det(·) denote the
complex conjugate transpose, the transpose, the inverse, the
standard Euclidean norm, the logarithm of base 2, and the
determinate function, respectively. E(·) denotes the statistical
expectation. Bdiag{·} denotes the block-diagonal operator of
a given vector/matrix. [A][i,:] selects the i-th row, while [A][:,i]
selects the i-th column from matrix A. Finally, [a][i] selects the
i-th element of vector a.

II. SYSTEM MODEL

We consider a multiuser MIMO downlink system consisting
of a single base station (BS), equipped with Nt antennas, and
K mobile stations (MSs), each equipped with Nr antennas
receiving Ns data streams. The BS has Lt = KNs ≤ Nt RF
chains and each MS has Lr = Ns ≤ Nr RF chains. At the
BS, a DBF matrix B = [B1, . . . ,BK ] ∈ CLt×KNs processes KNs
data streams to produce Lt outputs, which are upconverted
and mapped via an ABF matrix F ∈ CNt×Lt to the Nt antenna
elements for transmission. Here, Bk ∈CLt×Ns denotes the k-th
MS transmit DBF matrix, k ∈ {1, . . . ,K}. The structure at the
k-th MS is similar. An ABF matrix Wk ∈ CNr×Lr combines
the RF signals from the Nr antennas to create Lr outputs,
which are downconverted and further combined using a DBF
matrix Dk ∈ CLr×Ns . Therefore, the total transmit and receive
beamforming matrices of MS k are given respectively as

Tk = FBk ∈ CNt×Ns and Rk = WkDk ∈ CNr×Ns . (1)

The ABF parts are subject to specific constraints depending
on the hardware used to implement them. Note that several
ABF architectures can be found on the literature, see [4]–[8].
However, in this paper, we focus on the two well-known archi-
tectures: A1) fully-connected [4] and A2) partially-connected
[5]. Nonetheless, due to our decoupled beamforming design
structure, any other ABF architecture, see [6], [8], can be
readily used as well. Fig. 1 shows the considered HAD beam-
forming architectures in this paper along with the classical FD
beamforming architecture.

In the fully-connected architecture A1 [4], each RF chain
is connected to all antenna elements using a network of PSs.
Therefore, the ABF matrices F and Wk of user k are given as

F = [f1, . . . , fLt ] and Wk = [wk,1, . . . ,wk,Lr ], (2)

where f j ∈CNt ,wk, j ∈CNr , and
∣∣[f j][i]

∣∣= ∣∣[wk, j][i]
∣∣= 1,∀ j, i,k.

Meanwhile, in the partially-connected architecture A2 [5],
each RF chain is connected to only a subset of the antenna
elements using a network of PSs. The ABF matrices F and
Wk of user k are given as

F = Bdiag{f1, . . . , fLt},Wk = Bdiag{wk,1, . . . ,wk,Lr}, (3)

where f j ∈ CMt ,wk, j ∈ CMr ,
∣∣[f j][i]

∣∣ = ∣∣[wk, j][i]
∣∣ = 1,∀ j, i,k,

assuming that Mt = Nt/Lt and Mr = Nr/Lr.

A. Circuitry power models and analysis

In the following, we first introduce the circuitry power
models of the considered beamforming architectures shown
in Fig. 1. Later on, we investigate the number of users
threshold, above which the FD architecture has lower power
consumption than the fully-connected (A1) and the partially-
connected (A2) architectures. To make our analysis applicable
to other developed algorithms in the literature, we consider the
well-known and widely used circuitry power model from [9],
[25]. Let PX

c denotes the total circuitry power consumption, in
Watts, by the BS and K MSs when using the architecture X ,
X ∈ {FD,A1,A2}, i.e.,

PX
c = PX

c,t +K ·PX
c,r, (4)

where PX
c,t and PX

c,r denote the circuitry power consumption of
architecture X at the BS and each MS, respectively. Following
the circuitry power consumption model from [25], the PX

c,t and
PX

c,r are given as

PX
c,r =


Nr(PLNA +PRF +PADC)+PBB FD
Nr(PLNA +LrPPS)+Lr(PRF +PADC)+PBB A1
Nr(PLNA +PPS)+Lr(PRF +PADC)+PBB A2

(5)

PX
c,t =


Nt(PPA +PRF +PDAC)+PBB FD
Nt(PPA +LtPPS)+Lt(PRF +PDAC)+PBB A1
Nt(PPA +PPS)+Lt(PRF +PDAC)+PBB A2

(6)

where PLNA, PPS, PRF, PADC, PBB, PPA, and PDAC denote
respectively the power consumption by a low-noise-amplifier,
PS, RF chain, analog-to-digital converter, baseband amplifier,
power-amplifier, and digital-to-analog converter. The power
consumption for each of the above components can be written
with respect to the reference power Pref = 0.02W as [9]

PLNA = Pref

PPA = 7Pref

PADC = 10Pref

PDAC = 5.5Pref

PBB = 10Pref

PRF = 2Pref

PPS = 1.5Pref.

Let us define the circuitry power consumption ratio between
the FD architecture and the HAD architectures A1 and A2 as

α
{A1,A2} =

P{A1,A2}
c

PFD
c

. (7)

Substituting the circuitry power consumption values pro-
vided above into (5) and (6) and using the assumption that
Lr = Ns and Lt = KNs = KLr, αA1 and αA2 can be written,
after straightforward simplifications, as

α
A1 =

Kx1 + c1

Ky+b
,αA2 =

Kx2 + c2

Ky+b
, (8)



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2933305, IEEE
Transactions on Vehicular Technology

4

(a) Fully digital (FD) (b) A1: Fully-connected (FC) (c) A2: Partially-connected (PC)

Fig. 1: Block diagrams of the considered beamforming architectures of the BS and the k-th MS.

where x1 = Lr(1.5Nt + 1.5Nr + 19.5)+Nr + 10, x2 = 2.5Nr +
19.5Lr+10, c1 = 7Nt +10, c2 = 8.5Nt +10, y= 13Nr+10, and
b = 14.5Nt +10. From (8), we are interested in the number of
users threshold above which the FD architecture consumes less
circuitry power. First, note that b> c2 > c1. Thus, investigating
(8) for the value of K such that αA1 ≥ 1, gives us

α
A1 ≥ 1 if K ≥

⌈b− c1

x1− y

⌉
≥
⌈ 7.5Nt

Lr(1.5Nt +1.5Nr +19.5)−12Nr

⌉
, (9)

where d·e denotes the ceiling function. Meanwhile, investigat-
ing (8) for the value of K such that αA2 ≥ 1, gives us

α
A2 ≥ 1 if K ≥

⌈b− c2

x2− y

⌉
≥
⌈ 6Nt

19.5Lr−10.5Nr

⌉
. (10)

From (10), since Lr ≤ Nr, then to have a meaningful K
value, i.e., K ≥ 1, the only option is to have Lr = Nr. This
implies that for any Nr > Lr, which is the natural case in
any HAD beamforming architecture, we always have αA2 < 1,
i.e., the partially-connected architecture A2 always has lower
circuitry power consumption than the FD architecture. Thus,
we can simplify (10) as K ≥

⌈
6Nt
9Lr

⌉
. For example, if we assume

Nr = Lr = 1 and Nt = 8, then if K ≥ 6, we have αA2 ≥ 1.
However, if we assume Nt = 16, then if K≥ 11 we have αA2≥
1. Please refer to Fig. 2, where we show the circuitry power
consumption ratio α versus Nt and K for different Nr and Lr
values. From Fig. 2, it is clear that, for a given system setup,
when the number of users exceeds a certain threshold, given
by (9) or (10), the FD architecture consumes less circuitry
power than the HAD architectures A1 and A2.

To better understand the impact of circuitry power consump-
tion Pc on the relationship between SE and EE, Fig. 3 shows
SE versus EE for different Pc values. From Fig. 3, we can
see that when the circuitry power consumption is not taken
into account (Pc = 0), there is always an inverse relationship
between the system’s SE and EE. However, for the nonzero
Pc scenarios, we can observe that the maximum EE decreases
with an increasing Pc value, where the EE increases in the low
SE region and decreases in the high SE region.

From the above results, we can conclude that architecture
A1 is less energy efficient than the FD architecture when the
number of users exceeds a certain threshold, given by (9),
which depends on the number of transmit and receive antennas

Fig. 2: Circuitry power ratio α{A1,A2} vs. number of transmit
antennas Nt and number of users K.

Fig. 3: SE vs. EE for different Pc values considering a system
with [K,Nt ,Nr,Ns] = [2,64,4,2]. The beamforming matrices
are updated using the FD BD approach [8], [23] for a range
of signal-to-noise ratio (SNR) values, where the SE and EE
are given by (12) and (13), respectively.
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and RF chains that are employed by each user. In contrast, A2
seems a promising architecture to increase the EE, mainly due
to its very low circuitry power consumption compared with
both the FD and the A1 architectures.

III. PROBLEM FORMULATION

We consider a narrow-band block-fading propagation chan-
nel, where the received signal yk at the k-th MS is given as

yk = HkTksk +∑ j 6=kHkT js j +nk ∈ CNr , (11)

where Hk ∈CNr×Nt is the MIMO channel matrix between the
BS and the k-th MS, such that E[‖Hk‖2

F ] = NrNt , sk ∈ CNs is
the transmitted data vector with E[sksH

k ] = INs , and nk ∈ CNr

is the additive white Gaussian noise with variance σ2.
Throughout this paper, we assume that the BS and each

MS has perfect channel state information (CSI). Although
perfect CSI cannot be acquired in practice, several high-
resolution CSI estimation methods have been proposed in
the literature, e.g., the CSI estimation based on the least-
square methods proposed in [28]. However, such methods are
impractical under massive MIMO setups, since they would
entail large training overhead. To avoid such a large overhead,
recent CSI estimation solutions [29]–[31] exploit the sparse
(or low rank) structure in the angular domain of massive
MIMO channels, which appears due to the small number of
scatterers compared to the number of antennas, especially
in millimeter-wave bands. Exploiting this sparse structure,
compressed sensing (CS) tools [32] can be used to estimate
the MIMO channel, where the problem can be turned into
estimating the parameters of dominant channel paths, namely
the angles-of-departure, the angles-of-arrival, and the complex
path gains. Using such methods, the pilot overhead can be
significantly reduced, while still achieving a high resolution
CSI estimation. However, the CSI estimation problem is out
of the scope of this paper and we refer to [28]–[31] for more
details.

Assuming Gaussian signaling and single-user detection,
where the interference is treated as additional noise, the SE of
MS k can be written as [4]

rk = logdet(INs +RH
k HkTkTH

k HH
k RkΨ−1

k ), (12)

where Ψk = RH
k

(
∑ j 6=k HkT jTH

j HH
k + σ2INr

)
Rk denotes the

residual inter-user interference plus noise. The system’s EE
is then defined as

τ =
∑k rk

Ptot
=

∑k rk

∑k ‖FBk‖2
F +PX

c
, (13)

where Ptot =∑k ‖FBk‖2
F+PX

c denotes the total power consump-
tion and X ∈ {A1,A2}. In this paper, our objective is to design
the DBF and the ABF parts of Tk and Rk,∀k, such that the
system’s EE given by (13) is maximized, i.e., we consider the
following optimization problem

max
{F,Wk,Bk,Dk,∀k}

τ =
∑k rk

∑k ‖FBk‖2
F +PX

c

s.t. F ∈F ,

Wk ∈W ,∀k,

∑
k
‖FBk‖2

F≤ Pmax,

(14)

where Pmax is the maximum allowed transmit power, F and
W denote the sets with all possible analog beamformers
satisfying the constraints associated with the considered ABF
architecture: A1 or A2.

Problem (14) is a fractional optimization problem, which
is nonconvex and NP-hard [33]. The major difficulty comes
from the joint optimization of the DBF and ABF parts and
the nonconvex constraints in F ∈ F and Wk ∈ W . In the
following, we relax the joint optimization and decouple the
optimization of the DBF and the ABF parts by treating them
separately.

IV. ANALOG BEAMFORMING DESIGN

In this section, we design the ABF parts F and Wk,∀k,
without considering the DBF parts Bk and Dk,∀k. By removing
Bk and Dk,∀k from problem (14) and noting that ‖F‖2

F is
a constant, since we impose the constraint of F ∈ F i.e.,
|[F][i, j]| = 1,∀i, j, then the constraint function ∑k‖F‖2

F≤ Pmax
becomes inactive and can be removed. Further, the term
‖F‖2

F + PX
c is also a constant and can thus be removed,

since multiplying the objective function by a constant does
not change the obtained solutions. Therefore, after removing
the irrelevant constant terms, problem (14) reduces to the
following fully-analog SE maximization problem

max
{F,Wk,∀k}

∑
k

r̃k

s.t. F ∈F ,

Wk ∈W ,∀k,

(15)

where r̃k = logdet(ILr + WH
k HkFFHHH

k WkΨ̃−1
k ) and Ψ̃k =

WH
k

(
∑ j 6=k HkFFHHH

k +σ2INr

)
Wk. Problem (15) is still non-

convex and NP-hard. Note that if we neglect the constant
modulus constraints, i.e., F ∈F and Wk ∈W ,∀k, a solution
to problem (15) can be obtained by using its relationship to the
weighted mean-square-error minimization problem, as shown
in [34], or alternatively using one of the proposed algorithms
in [24]. However, the constant modulus constraints make all
the aforementioned solutions unsuitable, since a new set of
constant modulus constraints must be satisfied, and thus a new
solution approach is required.

We assume that the transmit DBF matrices Bk,∀k, are
updated afterwards using the BD method [23], [35] from
the resulting equivalent channels WH

k HkF,∀k. This implies
that for any given ABF parts F and Wk,∀k, the terms
HkFB jBH

j FHHH
k = 0,∀ j 6= k are always satisfied. Therefore,

the inter-user interference plus noise term Ψ̃k can be simplified
and written as Ψ̃k =σ2WH

k Wk. Note that with architecture A2,
we have WH

k Wk =NrILr due to the block-diagonal structure of
Wk. However, with architecture A1, we have WH

k Wk ≈ NrILr

with high probability for large Nr [36]. Please note that, in
the millimeter wave communication, large Nr is practically
feasible, thanks to their very short wavelength, where a large
number of antennas can be easily installed in a small physical
area [3]. To this end, problem (15) can be simplified and
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written as
max
F,W

logdet(IKLr +WHHFFHHHW),

s.t. F ∈F ,

W ∈W ,

(16)

where H = [HT
1 , . . . ,H

T
K ]

T ∈ CKNr×Nt and W =
Bdiag{W1, . . . ,WK} ∈ CKNr×KLr . Problem (16) is still
nonconvex and NP-hard, due to the joint optimization
between F and W and their constant modulus constraints. In
the following, we relax the joint optimization by decoupling
the optimization variables and update them in two stages: in
the first stage, we update F for fixed W, while in the second
stage, we update W for fixed F.

A. First Stage: Updating F
When W is fixed, problem (16) simplifies to

max
F

ζt = logdet(IKLr +WHHFFHHHW),

s.t. F ∈F .
(17)

Let H̃ = WHH ∈CKLr×Nt . Then we can write the objective
function of problem (17) as [5]

ζt = logdet(E j)+ log(1+ fH
j H̃HE−1

j H̃f j), (18)

where E j = IKLr + H̃F̄ jF̄H
j H̃H ∈ CKLr×KLr and F̄ j ∈ CNt×Lt−1

is a sub-matrix of F after removing its j-th column f j.
Observing the first term in the right-hand-side (RHS) of (18),
i.e., logdet(E j), we can note that it has the same structure
as the objective function ζt . Thus, it can also be written in a
similar method as in (18). In summary, the objective function
of problem (17) can be written as a series of log(1+ x j), j =
1, . . . ,Lt , functions as

ζt = log(1+ x1)+ · · ·+ log(1+ xLt ), (19)

where

x j = fH
j H̃HE−1

j H̃f j ∈ C, (20)

E j = IKLr + H̃F̂ jF̂H
j H̃H ∈ CKLr×KLr , (21)

for which F̂ j = [f1, . . . , f j−1], i.e., F̂ j is the matrix that holds
the first i < j columns from F. Note that, when j = 1, F̂ j is
an empty matrix, which implies that E1 = IKLr .

Writing the objective function ζt as given by (19) suggests
that problem (17) can be solved sequentially starting from
updating the first column f1 that maximizes log(1+ x1) until
the last column fLt that maximizes log(1+xLt ). In other words,
at the j-th step, problem (17) simplifies to

max
f j

log(1+ x j) = log(1+ fH
j G jf j)

s.t. f j ∈F ,
(22)

where G j = H̃HE−1
j H̃ ∈ CNt×Nt . Considering the high SNR

regime1, where log(1+fH
j G jf j)≈ log(fH

j G jf j), we have shown

1Please note that in the data transmission phase, the assumption of high
SNR is feasible due to the use of a large number of antennas. In this case,
not only we have large antenna gain, but also the inter-user interference is
hugely reduced due to the resulting narrow beams. It is worth pointing out
that the assumption of high SNR in a CSI estimation problem is not feasible,
since the SNR is normally low before the beamforming [3].

in [8] that the i-th element of f j, ([f j][i]), can be optimally
updated from the phase-angle of the product between the i-th
row of G j ([G j][i,:]) and vector f j, i.e., [f j][i] is updated as

[f j][i] = ψ
(
[G j][i,:]f j

)
, (23)

where ψ(z) = z
‖z‖ . Note that with architecture A1, each vector

f j has Nt nonzero elements, while with architecture A2, each
vector f j has Nt

Lt
nonzero elements.

B. Second Stage: Updating W
When F is fixed, problem (16) simplifies to

max
W

ζr = logdet(ILt +FHHHWWHHF),

s.t. W ∈W ,
(24)

where we have used the property of logdet(I + XY) =
logdet(I+YX). Comparing (24) to (17) we can see that both
have the same structure, and thus the above formulation can
be applied directly to update W. Let Ĥ = FHHH ∈ CLt×KLr .
Then, the objective function ζr can be written as a series of
log(1+ y j), j = 1, . . . ,KLr, functions as

ζr = log(1+ y1)+ · · ·+ log(1+ yKLr), (25)

where

y j = wH
j ĤHS−1

j Ĥw j ∈ C, (26)

S j = ILt + ĤŴ jŴH
j ĤH ∈ CLt×Lt , (27)

for which Ŵ j is formed as F̂ above, i.e., Ŵ j = [w1, . . . ,w j−1]

and S1 = ILt . Let C j = ĤHS−1
j Ĥ ∈ CKLr×KLr . Then, the i-th

element of w j, i.e. [w j][i] can be optimally updated as

[w j][i] = ψ
(
[C j][i,:]w j

)
. (28)

Note that with architecture A1, each vector w j has Nr
nonzero elements, while with architecture A2, each vector w j
has Nr

Lr
nonzero elements.

C. Proposed ABF Update Algorithm

Algorithm 1 summarizes the solution steps to update the
ABF matrices F and W. In Algorithm 1, we define the
function Θ(N,M) as an [N×M]-matrix initialization function
where each nonzero element has unit modulus. Further, to take
the different architectures into account, we define the binary
matrices Ξt ∈ ZNt×Lt and Ξr ∈ ZNr×KLr , such that the [i, j]-th
element is equal to one if the i-th antenna is connected to the
j-th RF chain and zero otherwise. The convergence proof of
Algorithm 1 is given by the following proposition.

Proposition 1: Algorithm 1 convergences monotonically to
a local stationary point and the solution is achieved at ζ ?

t = ζ ?
r .

Proof: The first part of the proposition can be proved
by noting that the element-wise updates in steps 12 and 25
are optimal [8]. This means that the cost functions log(1+
x(ι+1)

j ) and log(1+ y(ι+1)
i ) are non-decreasing functions, i.e.,

we always have

log(1+ x(ι+1)
j )≥ log(1+ x(ι)j ),∀ j

log(1+ y(ι+1)
i )≥ log(1+ y(ι)j ),∀i.
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Algorithm 1 Alternating optimization method for updating the
Analog Beamforming (ARAB).

1: Input: Hk,∀k.
2: Output: F and W.
3: Initialize F(0) = Θ(Nt ,Lt) and W(0) = Θ(KNr,KLr)
4: Set ι = 1
5: while not converged do

Stage 1: Updating F

6: Compute H̃(ι) = (W(ι))HH
7: Set E1 = IKLr and F̂ j = /0
8: for j = 1 to Lt do
9: Compute G(ι)

j = (H̃(ι))HE−1
j H̃(ι)

10: while not converged do
11: for i = 1 to Nt and [Ξt ][i, j] = 1 do
12: Update [f(ι+1)

j ][i] = ψ([G(ι)
j ][i,:]f

(ι)
j )

13: end for
14: end while
15: Set F̂ j = [F̂ j ∪ f(ι+1)

j ]

16: Update E j = IKLr + H̃(ι)F̂ jF̂H
j (H̃

(ι))H

17: end for
18: Set F(ι+1) = F̂ j and go forward to step 19.

Stage 2: Updating W

19: Compute Ĥ(ι) = (F(ι+1))HHH

20: Set S1 = ILt and Ŵ j = /0
21: for j = 1 to KLr do
22: Compute C(ι)

j = (Ĥ(ι))HS−1
j Ĥ(ι)

23: while not converged and do
24: for i = 1 to Nr and [Ξr][i, j] = 1 do
25: Update [w(ι+1)

j ][i] = ψ([C(ι)
j ][i,:]w

(ι)
j )

26: end for
27: end while
28: Set Ŵ j = [Ŵ j ∪w(ι+1)

j ]

29: Update S j = ILt + Ĥ(ι)Ŵ jŴH
j (Ĥ

(ι))H

30: end for
31: Set W(ι+1) = Ŵ j and go back to step 6.
32: end while

This implies that ζ
(ι+1)
t ≥ ζ

(ι)
t and ζ

(ι+1)
r ≥ ζ

(ι)
r , which

proves that Algorithm 1 is guaranteed to converge mono-
tonically to, at least, a local stationary point. However, the
convergence to the global optimal point cannot be guaranteed,
due to the non-convexity of the original problem. The second
part of the proposition is straightforward from the property of
logdet(I+XY) = logdet(I+YX).

V. DIGITAL BEAMFORMING DESIGN

For given and fixed ABF matrices F and Wk,∀k, the main
task in this section is to design Bk and Dk,∀k, to maximize
the system’s EE. We assume that each MS k applies the noise
whitening filter Qk = (WH

k Wk)
− 1

2 ∈ CLr×Lr at the received
signal after the ABF combining. Thus, the received baseband
signal at the kth MS is given as

ỹk = H̃kBksk +∑ j 6=kH̃kB js j +QH
k WH

k nk, (29)

where H̃k = QH
k WH

k HkF ∈ CLr×Lt . Further, we assume that
MS k updates its receive DBF matrix Dk using the minimum

mean-square-error method as [24]

Dk = argmin
Dk

E[‖Dkỹk− sk‖2]

= (H̃kBkBH
k H̃H

k +Φk)
−1H̃kBk, (30)

where Φk = ∑ j 6=k H̃kB jBH
j H̃H

k + σ2ILr . As a result, the SE
function in (12) can be written as

rk = logdet(INs +BH
k H̃H

k Φ−1
k H̃kBk), (31)

and problem (14) simplifies to

max
{Bk,∀k}

τ =
∑krk

Ptot
,

s.t. ∑
k
‖FBk‖2

F≤ Pmax.
(32)

According to [33, Theorem 1] on nonlinear fractional pro-
gramming, problem (32) can be equivalently transformed into
a parameterized subtractive form by introducing an auxiliary
variable as

max
{Bk,∀k}

∑
k

rk− τ̊Ptot,

s.t. ∑
k
‖FBk‖2

F ≤ Pmax.
(33)

The existing research on fractional programming problems
has shown that solving the above problem is equivalent to
looking for a solution to problem (32) such that its objective
equals zero, i.e., ∑kr∗k − τ̊∗P∗tot = 0.

A solution to problem (32) w.r.t the transmit DBF matrices
Bk,∀k, can be found iteratively by investigating its Karush-
Kuhn-Tucker conditions [37] as the authors in [11] have
followed. However, we note that in massive MIMO settings,
the classical solutions, like the BD approach, can provide
very similar performance with a much lower complexity.
Therefore, differently from [11], we assume that the transmit
DBF matrices are given by the well-known BD approach.
More precisely, the DBF matrix of MS k is given as

Bk = ZkVkPk, (34)

where Zk and Vk define the transmit beamforming direction
and Pk = diag{√pk,1, . . . ,

√pk,Lr} is a diagonal matrix holding
the power allocations of the Lr data streams (recalling that
Lr =Ns). In (34), Zk ∈CLt×Lr holds the nullspace orthonormal
vectors of H̆k, which collects all the users’ equivalent channels
except user k, i.e.,

H̆k = [H̃T
1 , . . . ,H̃

T
k−1,H̃

T
k+1, . . . ,H̃

T
K ]

T ∈ C(K−1)Lr×Lt . (35)

Meanwhile, Vk holds the Lr dominant right singular vectors
of MS k effective channel

He
k = H̃kZk = UkΛkVH

k ∈ CLr×Lr , (36)

where Λk = diag{λk,1, . . . ,λk,Lr} is the diagonal matrix holding
the Lr singular values arranged in a decreasing order, Uk ∈
CLr×Lr and Vk ∈CLr×Lr are the left and right singular vectors,
respectively.
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With the transmit beamforming directions calculated as
above, problem (33) simplifies to a power allocation problem
that is given as

max
{pk,`}

∑
k

∑
`

rBD
k,` − τ̊Ptot,

s.t.∑
k

∑
`

pk,` ≤ Pmax,
(37)

where ` ∈ {1, . . . ,Lr} and rBD
k,` is given as

rBD
k,` = log(1+

1
σ2 λ

2
k,`pk,`). (38)

Investigating the Karush-Kuhn-Tucker (KKT) conditions
[37] of problem (37), the optimal power allocation pk,` of
the `-th stream of user k is given as

pk,` = max

[
0 ,

1
ln(2)(τ +µ)

− σ2

λ 2
k,`

]+
, (39)

where µ is the Lagrangian multiplier associated with the
constraint of problem (37), which can be calculated, e.g. using
the bi-section method, such that µ(∑k ∑` pk,`−Pmax) = 0.

Algorithm 2 summarizes the BD-based method for the EE-
Max approach, which is guaranteed to converge to the optimal
solution [12]. Note that, in the case of SE-Max approach, the
same algorithm can be used by omitting step 4, thus, reducing
Algorithm 2 to the classical water-filling method [38].

Algorithm 2 Proposed power allocation method (ALG2).

1: Input: λk,`,∀k, `, τ̊(0) = 0, Pmax,Pc
2: while not converged do
3: update p(ι)k,s ,∀k, ` for given τ̊(ι) using (39)

4: update τ̊(ι) = ∑k ∑` rBD(t)
k,` /∑k ∑` p(ι)k,`+Pc

5: end while

Remark 1: For the FD approach, Bk can be computed
exactly in the same way by assuming F= INt and Wk = INr ,∀k.
In this case, (35) can be rewritten as

H̆k = [HT
1 , . . . ,H

T
k−1,H

T
k+1, . . . ,H

T
K ]

T ∈ C(K−1)Nr×Nt . (40)

Observing the latter equation, we note that the condition
Nt ≥ (K− 1)Nr +Ns should be satisfied in order to have at
least Ns vectors in the nullspace of H̆k. To relax this condition,
we resort to a partial BD approach by requiring that the Vk
(i.e., the Lr dominant right singular vectors of the effective
channel He

k of MS k) be orthogonal to the dominant Lr left
singular vectors of the channels H j,∀ j 6= k, i.e., the nullspace
Zk with the FD approach is calculated from

H̆k = [H̄T
1 , . . . ,H̄

T
k−1,H̄

T
k+1, . . . ,H̄

T
K ]

T ∈ C(K−1)Lr×Nt , (41)

where H̄ j = UH
j H j ∈ CLr×Nt and U j ∈ CNr×Lr holds the dom-

inant Lr left singular vectors of the channel matrix H j of MS
j. In this way, each MS beamforming matrix Bk is orthogonal
to the Lr(K − 1)-dimensional subspace and nulls the most
significant part of the interference. Note that in this case we
have Zk ∈ CNt×Nt−(K−1)Lr and He

k = H̄kZk ∈ CLr×Nt−(K−1)Lr .

VI. COMPUTATIONAL COMPLEXITY

In this section, we provide the computational complexity
analysis of the major steps of the proposed Algorithms 1 and
2. Similarly to the assumptions made in [39], we assume that
the computational complexity of the matrix product between
[n×m] and [m× r] matrices, the SVD of [n×m] matrix, and
the inversion of [n×n] matrix are given by 2nmr,7nm2+4m3,
and 2

3 n3, respectively. Tables I and II show the detailed
computational complexity of Algorithms 1 and 2, respectively.
In Table I, T0 denotes the total number of iterations required by
the outer loop steps 5-32, while T1 (resp. T2) denotes the total
number of iterations required by the inner loop steps 10-14
(resp. 23-27).

In the next section, we show for comparison some simula-
tion results when the ABF matrices F and W are updated using
the proposed algorithm in [5]. In particular, we follow the same
solution steps of [5, Algorithm 2] to update F that maximizes
the function ζ̂t = logdet(IKLr +HFFHHH) and to update W
that maximizes the function ζ̂r = logdet(INt + HHWHWH)
sequentially from the phase-angles of the largest eigenvec-
tors. Note that the above updates are completely decoupled
between F and W, which is different from our proposed
ARAB algorithm that updates one variable while fixing the
other. However, we found that the convergence of the coupled
version of [5, Algorithm 2] are not monotonic and for some
channel realizations it might never converge. Thus, we restrict
our comparison to the decoupled updates, which provides a
lower-bound comparison to the proposed ARAB algorithm.

Table I shows the detailed computational complexity of the
algorithm proposed in [5]. Observing closely the results in
Table I, we can see that ARAB has a lower computational
complexity than Alg. [5], especially for large Nr and/or Nt ,
since the former operates on the equivalent channels H̃ ∈
CKLr×Nt and Ĥ ∈ CLt×KLr when updating the ABF matrices
F and W, respectively. By contrast, Alg. [5] operates on the
true channels H ∈CKNr×Nt and HH ∈CNt×KLr when updating
the ABF matrices F and W, respectively, where they have
larger dimensions than the H̃ and Ĥ counterparts. In Table III,
we show computational complexity comparing between the
ARAB and Alg. [5] algorithms in terms of the ratio β , which
is defined as

β =
β ARAB

β Alg. [5] , (42)

where β X ,X ∈ {ARAB,Alg. [5]}, denotes the number of flops
required by algorithm X when updating the ABF matrices F
and W. From Table III, it is clear that ARAB has significantly
lower computational complexity than Alg. [5], especially with
a large number of antennas. For instance, when Nt = 64 and
K = 1, ARAB has approximately 10% of the complexity of
Alg. [5], while it increases to around 27% when K = 4.

VII. NUMERICAL RESULTS

In this section, we show detailed simulation results to eval-
uate the performance of the proposed algorithm as compared
to the reference algorithm in [5] in terms of their achievable
SE and EE. We assume a geometric channel model with L
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TABLE I: Computational analysis of the ARAB and Alg. [5].

Notation Process Step ARAB Complexity Alg. [5] Complexity

c1 Computing H̃ 6 2K2LrNrNt -

c2 Computing G j 9 2Nt K2L2
r +2KN2

t Lr +
2
3 K3L3

r 2Nt K2N2
r +2KN2

t Nr +
2
3 K3N3

r

c3 Computing f j,∀ j 10-14 T1 · (2N3
t ) 11N3

t

c4 Computing E j 16 4KLrLt Nt +2K2L2
r Nt 4KNrLt Nt +2K2N2

r Nt

c5 Computing Ĥ 19 2Lt Nt KLr -

c6 Computing Gm 22 2KNrL2
t +2K2N2

r Lt +
2
3 L3

t 2KNrN2
t +2K2N2

r Nt +
2
3 N3

t

c7 Computing w j,∀ j 23-27 T2 · (2K2N3
r ) 11K3N3

r

c8 Computing Gm 29 4Lt LrK2Nr +2KL2
t Nr 4Nt LrK2Nr +2KN2

t Nr

- Computing F 6 to 17 T0 · (c1 +Lt(c2 + c3 + c4)) Lt(c2 + c3 + c4)

- Computing W 19 to 30 T0 · (c5 +KLr(c6 + c7 + c8)) KLr(c6 + c7 + c8)

TABLE II: Computational analysis of ALG2

Process Method Complexity

Computing H̃k,H̄k,∀k
HAD 2LrK(LrNr +NrNt +Nt Lt +2/3L2

r )

FD K(7NrN2
t +4N3

t +2LrNrNt)

Computing Zk,∀k
HAD K(7(K−1)LrL2

t +4L3
t )

FD K(7(K−1)LrN2
t +4N3

t )

Computing Vk,∀k
HAD K(2L2

r Lt +11L3
r )

FD K(2LrNt Ne +7LrN2
e +4N3

e ), where Ne = Nt − (K−1)Lr

TABLE III: Computational complexity comparison between
ARAB and Alg. [5] [Nr = 8,Ns = 2,T0 = T1 = T2 = 5].

Nt = 16 Nt = 64

K = 1 β = 0.6689 β = 0.0999

K = 4 β = 1.0692 β = 0.2692

scatterers, each of which contributes to a single path, where
the channel matrix Hk ∈ CNr×Nt between the BS and the kth
MS is modeled as [3]–[5], [8], [30]

Hk =
1√
L

L

∑
`=1

a`a(θ`)bT(φ`), (43)

where L is the total number of channel paths, fixed to L= 6 for
all the simulation scenarios, for which a` ∼ C N (0,1),θ` ∈
[0,2π], and φ` ∈ [0,2π] denote, respectively, the complex
path gain, angle of arrival, and angle of departure of the `-
th path. Further, a(θ`) ∈ CNr×1 and b(φ`) ∈ CNt×1 denote
the array response vectors at MS and BS, respectively. We
assume uniform linear arrays with half wavelength between
the antenna elements, where the array response vectors a(θ`)
and b(φ`) are given respectively as [3], [4]

a(θ`) =
[
1,e jπ cos(θ`), . . . ,e jπ(Nr−1)cos(θ`)

]T
, (44)

b(φ`) =
[
1,e jπ cos(φ`), . . . ,e jπ(Nt−1)cos(φ`)

]T
. (45)

Fig. 4 shows the convergence behavior of the proposed
ARAB algorithm (solid-lines) when updating the ABF matrix
F in terms of the cost function ζt versus the iteration index (ι).
Fig. 4 also includes the cost function ζ̂t (dashed-lines) when
the ABF matrix F is updated using the reference algorithm
from [5]. From Fig. 4, we can observe that ARAB has a
monotonic and fast convergence rate, within 4-6 iterations.

Obviously, architecture A1 has higher cost function (equivalent
channel capacity) than architecture A2, in the expense of
a higher energy consumption and computational complexity.
Further, ARAB clearly achieves higher cost function than Alg.
[5], since it maximizes the cost function iteratively by taking
into account both the transmit and the receive ABF matrices,
while Alg. [5] completely decouples the transmit and the
receive ABF matrices and updates each one separately, which
results in a lower cost function.

Fig. 4: Convergence behavior of the ARAB algorithm [Nr =
8,Ns = 2, and K = 4].

Fig. 5 shows the SE versus SNR and the EE versus SNR
results while assuming Nt = 64, Nr = 8, Ns = 2, and K = {1,4}.
For the EE-Max approach, we relax the maximum power
threshold Pmax so that we make the maximum power constraint
in problem (37) inactive. As a result, neither the SE nor the
EE is in function of the SNR level, where the optimal power
allocation maximizing the EE is obtained using ALG2.
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From Fig. 5a, i.e., when K = 1, we can observe that both
ARAB and Alg. [5] achieve almost an equal SE performance
with both architectures A1 and A2. As expected, the fully-
connected architecture A1 achieves a better SE performance
than the partially-connected A2 and close to that of the FD
architecture counterpart. However, from Fig. 5b, i.e., when
K increases to 4, the proposed ARAB algorithm when using
the architecture A1 maintains its very close SE performance
to the FD counterpart, unlike the reference Alg. [5]. More
interestingly, we can see from Fig. 5c that when K = 1,
architecture A1 achieves the best EE performance followed by
architecture A2, while the FD architecture achieves the worst
EE performance.

However, the results are completely different when the
number of users increases to K = 4, where the FD architecture
seems to achieve the best EE performance compared to the
both HAD architectures A1 and A2. These results are expected
for the following reasons. As Fig. 2 shows, when K = 4
and Nt = 64, the circuitry power consumption of architecture
A1 exceeds that of the FD architecture. Considering that
architecture A1 has lower SE than that of the FD architecture,
since its major beamforming functionalities are implemented
in the analog domain, then it is expected for architecture A1 to
have lower EE than FD architecture. On the other hand, Fig. 2
shows that architecture A2 has always lower circuitry power
consumption than that of the FD architecture. Therefore, in
theory, architecture A2 can be more energy efficient depending
on its achievable SE. However, in architecture A2, not only
the major beamforming functionalities are implemented in
the analog domain, but also each RF chain has significant
lack of information, since they are connected with a small
number of antennas. This fact causes severe degradation in the
system beamforming capabilities and degrees-of-freedom, as
compared with the A1 and FD architectures. Therefore, the SE
of architecture A2 is significantly degraded, which degrades
its EE as well.

To gain more insights about the above observations, Figs.
6, 7, and 8 show the simulation results while varying the
number of transmit antennas Nt and the number of users K.
Fig. 6 shows SE versus EE results when using the EE-Max
approach to update the DBF matrices, while Fig. 7 shows SE
versus EE results when using the SE-Max approach to update
the DBF matrices. Fig. 8 shows the power allocation, at the
convergence, for the EE-Max approach scenarios (note that the
SE-Max approach always uses the maximum power). From
Figs. 6 and 7, we can see that the above observations from
Fig. 5 holds true here, as well, when varying the number of
transmit antennas Nt . For instance, when K = 1, both HAD
architectures A1 and A2 achieve lower SE but higher EE than
the FD architecture, where A1 seems to outperform A2 in
terms of both SE and EE. From Fig. 8 it can also be seen
that when K = 1, architecture A1 uses the least transmit-
power as well. On the other hand, when the number of users
increases to K = 4, the FD architecture outperforms both the
HAD architectures A1 and A2 in terms of both SE and EE,
except for the single case when Nt = 16, for the same reasons
pointed out above.

Further, from Fig. 8, it can be seen that the FD architecture

(a) SE vs. SNR [K = 1]

(b) SE vs. SNR [K = 4]

(c) EE vs. SNR

Fig. 5: SE vs. SNR & EE vs. SNR [Nt = 64,Nr = 8,Ns = 2].

also uses less transmit power than A1 and A2 architectures
when Nt ≥ 64. Note that when the ABF matrices are updated
using the proposed ARAB algorithm, both HAD architectures
A1 and A2 achieve higher SE and EE than when the ABF
matrices are updated using the reference algorithm. Again,
this is an expected result, since the ARAB algorithm achieves
a higher cost function value than the reference algorithm, i.e.,
the resulting equivalent channel capacity is larger using the
ARAB algorithm than that using the reference algorithm (see
Fig 4). Comparing results from Fig. 6 to Fig. 7, we can see
that the above observations hold true as well when the DBF
matrices are designed using the SE-Max approach, i.e., when
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Fig. 6: EE-Max: SE vs. EE with varying number of transmit
antennas Nt ∈ {16,32,64,128} and number of users K ∈ {1,4}
[Nr = 8,Ns = 2].

Fig. 7: SE-Max: SE vs. EE with varying number of transmit
antennas Nt ∈ {16,32,64,128} and number of users K ∈ {1,4}
[ρ = 10 dB, Nr = 8,Ns = 2].

the full transmit power is used. Note that both approaches
achieve comparable SE vs. EE performance, especially when
K = 4, although the EE-Max approach uses less transmit
power compared to the SE-Max approach, as shown in Fig.
8. Obviously, one can increase the transmit power ρ with
the SE-Max approach to achieve higher SE at the expense
of decreasing the EE. Finally, note that the transmit power
increases with Nt and K, which is needed to compensate for
increasing circuitry power.

VIII. CONCLUSIONS

We have proposed a low-complexity hybrid analog-digital
beamforming design for downlink multiuser scenarios to max-
imize the system’s EE. We have shown that, based on the most
recently available data for the circuitry components power
consumption, the fully-connected architecture based on high-
resolution PSs has higher circuitry power consumption than
the FD counterpart if the number of users exceeds a certain
threshold. In such scenarios, the FD structures are surely more
energy-efficient. By contrast, the partially-connected architec-
ture always has lower circuitry power consumption than both
architectures: fully-connected and FD. However, due to the
severe degradation on its degrees-of-freedom, we found that

Fig. 8: EE-Max: Power allocation with varying number of
transmit antennas Nt ∈ {16,32,64,128} and number of users
K ∈ {1,4} [Nr = 8,Ns = 2].

it can still achieve not only lower SE, but also lower EE than
the FD architecture in some multiuser scenarios. Modifying
the power consumption model in (4) to account for the
computational complexity of beamforming and investigating
the impact of low-resolution PSs are left for future works.
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Fortaleza, Brazil, in 2002 and 2004, respectively,
and the Dr.-Ing. degree from the Technische Univer-
sität Darmstadt, Germany, in 2008, all in Electrical
Engineering. From 2001 to 2004 he was with the
Wireless Telecom Research Group (GTEL), Fort-
aleza, Brazil. In 2003 he was a visiting researcher at
Ericsson Research, Stockholm, Sweden. From 2005
to 2008 he was with the Communications Engineer-
ing Lab of the Technische Universität Darmstadt

and since 2010 he is a Professor at the Federal University of Ceará. He
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