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Closed-Form Semi-Blind Receiver For MIMO
Relay Systems Using Double Khatri–Rao

Space-Time Coding
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Abstract—In this letter, we consider a one-way two-hop AF
relaying scheme employing two independent Khatri-Rao space-
time (KRST) codings at the source and relay nodes. The signals
received at destination form a fourth-order tensor whose dimen-
sions correspond to four signal diversities, and which satisfies
a nested PARAFAC model. Exploiting this nested structure, we
derive two matrix unfoldings expressed in terms of two Khatri-
Rao products which are used to propose a closed-form semi-blind
receiver allowing to jointly estimate the information symbols and
the individual channels. A numerical analysis shows that this new
receiver achieves a substantial computational complexity reduc-
tion over an iterative (ALS-based) semi-blind receiver, especially
in presence of a great number of source and/or relay antennas.

Index Terms—Channel estimation, cooperative relaying, KRST
coding, nested PARAFAC, semi-blind receiver.

I. INTRODUCTION

T HE use of relay stations between the source and destina-
tion nodes of a MIMO wireless communication system

is a pertinent technique to mitigate some propagation issues,
such as path loss and shadowing [1], [2]. Several works have
pointed out that the channel state information (CSI) of both
source-relay and relay-destination links is highly desirable for
optimizing two-hop MIMO relay systems [3]–[7]. With non-
regenerative protocols, such as the amplify-and-forward (AF)
one, the concatenation of two transmission hops without decod-
ing at the relay implies that conventional point-to-point esti-
mation strategies cannot dissociate the channels of both links,
and consequently the efficiency of optimization techniques is
compromised.

Unlike point-to-point MIMO systems for which several
tensor-based receivers have been proposed [8]–[12], few works
have addressed tensor-based methods to solve the problem of
channel estimation in MIMO AF relay systems. Most of these
works use pilot symbols, which induces a loss of spectral
efficiency [13]–[15].
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Recently, two alternative strategies were proposed to jointly
estimate the information symbols and the individual channels in
a one-way two-hop AF relaying system [16], [17]. In [16], three
semi-blind receivers are proposed using a simplified Khatri-Rao
space-time (KRST) coding [9] at the source node. The signals
received at the destination node then satisfy a PARATUCK2
model [18]. In [17], the authors propose a similar transmis-
sion scheme with a KRST coding at the relay, which introduces
an extra time diversity with respect to the system proposed in
[16], leading to a nested PARAFAC model [19] for the tensor of
signals received at destination. This supplementary time diver-
sity is at the origin of a remarkable improvement of the bit
error rate (BER) performance. A double two-step alternating
least squares receiver, called DALS, was derived in exploit-
ing the nested PARAFAC model. This receiver is composed
of two ALS-based algorithms, denoted ALS-X and ALS-Z,
which are dedicated respectively to symbol and channel estima-
tion. Even if competitive, this receiver presents the drawbacks
to be iterative and to need several matrix right inversions that
limit its effectiveness. This letter proposes a closed-form (SVD-
based) semi-blind receiver which relies on a double Khatri-Rao
factorization (DKRF). This new receiver offers the same per-
formance as the DALS one proposed in [17] with the great
practical advantage of being non-iterative, which entails a sub-
stantial complexity reduction as demonstrated by our numerical
analysis.

Notations: Scalars, column vectors, matrices, and tensors
are denoted by lower-case (x), boldface lower-case (x), bold-
face capital (X), and calligraphic (X ) letters, respectively.
XT , X∗, X†, Xl· and X·m are the transpose, the conju-
gate, the pseudoinverse, the lth row, and the mth column
of X ∈ C

L×M , respectively. Dn(X) stands for the diagonal
matrix formed from the elements of Xn·. Given a third-
order tensor X ∈ C

I×J×K , with entry xi,j,k, the matrices
XJK×I , XKI×J and XIJ×K denote tall mode-1, mode-2
and mode-3 unfoldings, with xi,j,k = [XJK×I ](k−1)J+j,i =
[XKI×J ](i−1)K+k,j = [XIJ×K ](j−1)I+i,k. The vec and unvec
operators are defined by xJKI = vec(XJK×I) ∈ C

JKI×1 ↔
XJK×I = unvec(xJKI).

A PARAFAC decomposition [20] of a third-order tensorX ∈
C

I×J×K , with rank-R and matrix factors (A,B,C), will be
noted ‖A,B,C;R‖. Tall and flat mode-1 matrix unfoldings of
X are respectively given by

XJK×I = (C �B)AT = (XI×JK)T , (1)

where � denotes the Khatri-Rao product.
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Fig. 1. One-way two-hop relay system model.

II. SYSTEM MODEL

We consider a one-way relay MIMO system, where the com-
munication is divided into two hops (Fig. 1). During the first
one, the source node transmits the information symbols to the
relay (SR link), and during the second one the source stays
silent, while the relay forwards amplified signals to the des-
tination node (RD link). MD, MS and MR are the numbers
of antennas at the destination, source and relay nodes, respec-
tively. The communication channels are considered flat-fading
and invariant during the transmission protocol.

Let S ∈ C
N×MS be a matrix containing N data-streams

composed of MS symbols which are multiplexed onto the MS

source antennas, all symbols of the first data-stream being equal
to one. A simplified Khatri-Rao space-time (KRST) coding [9]–
i.e. without the linear constellation precoding (LCP) matrix–is
used at the source for introducing temporal redundancy with the
code matrix C ∈ C

P×MS , where P is the source (spreading)
code length, such that the pth repetition of the nth coded data-
stream, allocated to the mS th antenna, satisfies the following
equation

s̄mS ,p,n = cp,mS
sn,ms

. (2)

The third-order tensor S̄ ∈ C
MS×P×N contains the coded

signals to be sent by the source. The noiseless signals received
by the relay after transmission of the coded signals via the
source-relay channel H(SR) ∈ C

MR×MS are given by

wmR,p,n =

MS∑
mS=1

h(SR)
mR,mS

s̄mS ,p,n

=

MS∑
mS=1

h(SR)
mR,mS

cp,ms
sn,ms

. (3)

The set of signals given by (3) forms a third-order ten-
sor W ∈ C

MR×P×N satisfying a PARAFAC decomposition
‖H(SR),C,S;MS‖. At the relay, a second KRST coding is per-
formed on the incoming signals, delivering the following coded
signals

w̄mR,j,p,n = gj,mR
wmR,p,n, (4)

where G ∈ C
J×MR is the relay code matrix, and J is its code

length. This second KRST coding introduces a supplementary
time spreading. The relaying protocol is non-regenerative, in
the sense that no decoding is performed at the relay. The coded
signals are forwarded through the relay-destination channel
H(RD) ∈ C

MD×MR . Using (3) and (4), the signals received at
destination in absence of noise are given by

xmD,j,p,n =

MR∑
mR=1

h(RD)
mD,mR

w̄mR,j,p,n,

=

MR∑
mR=1

MS∑
mS=1

h(RD)
mD,mR

gj,mR
h(SR)
mR,mS

cp,mS
sn,ms

,

(5)

=

MS∑
mS=1

zmD,j,mS
cp,mS

sn,ms
, (6)

where Z ∈ C
MD×J×MS is the effective chan-

nel tensor which satisfies the PARAFAC model
‖H(RD),G, (H(SR))T ;MR‖, i.e.

zmD,j,mS
=

MR∑
mR=1

h(RD)
mD,mR

gj,mR
h(SR)
mR,mS

. (7)

Eq. (6) defines a fourth-order tensor X ∈ C
MD×J×P×N for

the signals received at destination. This tensor satisfies a nested
PARAFAC model (cf. (37), [17]). By combining the first two
modes of X , this tensor can be reformulated as the PARAFAC
model ‖ZMDJ×MS

,C,S;MS‖. From this PARAFAC model
and Eq. (7), one can deduce the following matrix unfoldings
of the tensors X and Z

XNMDJ×P = (ZMDJ×MS
� S)CT , (8)

ZMSMD×J =
(
H(RD) � (H(SR))

T
)
GT . (9)

These two equations written in terms of Khatri-Rao products
are at the basis of the double Khatri-Rao factorization (DKRF)
based receiver presented in the next section.

III. SEMI-BLIND DKRF RECEIVER

Given the tensor X of signals received at destination, the
proposed DKRF receiver jointly estimates the symbol matrix
S and the individual channels H(RD) and H(SR) by means of
(8) and (9). Assume that the code matrices C and G are known
at the receiver and designed with orthonormal columns, which
implies CTC∗ = IMS

and GTG∗ = IMR
. Then, let us define

A = ZMDJ×MS
� S, (10)

B = H(RD) � (H(SR))T . (11)

Denoting X̃ the tensor of noisy signals received at destina-
tion, and ẐMSMD×J an estimate of ZMSMD×J deduced by
reshaping the estimate ẐMDJ×MS

, the LS estimates of the
Khatri-Rao products A and B are deduced from (8) and (9) as

Â = X̃NMDJ×PC
∗ (12)

B̂ = ẐMSMD×JG
∗. (13)

The DKRF receiver is composed of two estimation steps,
herein referred to as KRF-X (Alg. 1) and KRF-Z (Alg. 2).
These algorithms exploit the LS estimates (12) and (13) of the
Khatri-Rao products (10) and (11) for estimating the matrix fac-
tors S and ZMDJ×MS

, on one hand, and the channels H(SR)

and H(RD), on the other hand. These algorithms are based on
the reorganization of the Khatri-Rao product of two vectors
(u � v) into a rank-one matrix unvec (u � v) = vuT , imply-
ing that the factors of this Khatri-Rao product can be obtained
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Algorithm 1. KRF-X: Symbol estimation

Inputs X̃NMDJ×P and C

1) Calculate the LS estimate Â = X̃NMDJ×PC
∗ ∈

C
NMDJ×MS .

2) For mS ∈ {1, · · · ,MS}:
i. Reshape Â·mS

into unvec (Â·mS
) ∈ C

N×MDJ .
ii. Compute the rank-one approximation of unvec

(Â·mS
).

iii. Deduce Ŝ·mS
= u
√
σmax and (ẐMDJ×MS

)·mS
=

v∗√σmax, where σmax is the largest singular value,
and u and v are respectively the associated left-
singular and right-singular vectors.

3) Remove the column scaling ambiguities using (14).
Outputs Ŝ and ẐMDJ×MS

Algorithm 2. KRF-Z: Channels estimation

Inputs ẐMDJ×MS
and G

1) Reshape ẐMDJ×MS
into ẐMSMD×J .

2) Calculate the LS estimate B̂ = ẐMSMD×JG
∗ ∈

C
MSMD×MR .

3) For mR ∈ {1, · · · ,MR}:
i. Reshape B̂·mR

into unvec (B̂·mR
) ∈ C

MS×MD .
ii. Compute the rank-one approximation of unvec

(B̂·mR
).

iii. Deduce
(
Ĥ

(SR)
mR·

)T

= u
√
σmax and Ĥ

(RD)
·mR =

v∗√σmax, where σmax is the largest singular
value, and u and v are respectively the associated
left-singular and right-singular vectors.

4) Remove the column scaling ambiguities using (15).
Outputs Ĥ(SR) and Ĥ(RD)

by calculating the rank-one approximation of the matrix unvec
(u � v) by means of its SVD. Applying this result to the Khatri-
Rao product of two matrices (U �V), with U ∈ C

I×R and
V ∈ C

J×R, these matrices can be calculated column by col-
umn via the SVD of each rank-one matrix v.ru

T
.r associated

with the Khatri-Rao product of the rth columns of the matrix
factors U and V. This idea was used in [21] for finding
the factors of the Kronecker product of two matrices. It was
exploited in [22] for estimating two matrix factors of a third-
order PARAFAC decomposition when one factor is known. It
was also used in [23] for estimating the channels of an AF
relaying system.

A. Code Design and Identifiability

As mentioned at the beginning of Section III, the code matri-
ces C and G are designed to have orthonormal columns. In the
standard KRST coding [9], the code matrix C is designed as
a truncated DFT matrix, which enables a performance selec-
tion between full diversity (P ≥MS) and full transmission
rate (P = 1). Motivated by the same purpose, the same source
code matrix is used here. Therefore, since P ≥MS , the DKRF
receiver exploits full (transmit) diversity.

The double KRST coding allows a trade-off between source
and relay code lengths to obtain better coding gains than the
single KRST coding for a same transmission rate. In addition, if
one wishes to estimate only the symbols, then KRF-Z becomes
optional, and J can take values smaller than MR to increase
the transmission rate rather than the (relay) transmit diversity.
However, if estimation of the channels H(RD) and H(SR) is
needed, then the condition J ≥MR must be verified.

Regarding the identifiability issue, the right invertibility of
CT and GT implies P ≥MS and J ≥MR, which are neces-
sary and sufficient identifiability conditions for using the KRF-
X and KRF-Z algorithms. Moreover, the column orthonormal-
ity of C and G allows to simplify the calculation of the right
inverses of CT and GT as C∗ and G∗, respectively. It is worth
mentioning that these identifiability conditions are quite sim-
ple, being directly linked to the choice of the code matrices C
and G. There is no other additional rank (or dimensionality)
condition to be satisfied on the channel and symbol matrices,
which is in contrast with [17] where a more complicated set of
conditions must be satisfied to ensure identifiability using the
NPALS and DALS receivers (please see the five inequalities in
Theorem 1, Section IV-C in [17]).

B. Uniqueness Conditions

Under the assumptions that the channels are rich scatter-
ing and that the symbol matrix is full column rank, with MS

and MR ≥ 2, the nested PARAFAC model is unique under the
condition min(MD,MR) ≥ max(MR −MS + 2, 2)[17]. The
column scaling ambiguities in the outputs of KRF-X and KRF-
Z can be eliminated by assuming known the first row of S and
H(RD), and modifying the estimated matrices as follows

Ŝ← ŜΛ(S), ẐMDJ×MS
← ẐMDJ×MS

(Λ(S))−1,
(14)

Ĥ(RD) ← Ĥ(RD)Λ(H), Ĥ(SR) ← (Λ(H))−1Ĥ(SR),
(15)

Λ(S) = D1(S)D
−1
1 (Ŝ),Λ(H) = D1(H

(RD))D−1
1 (Ĥ(RD)).

In practice, such a knowledge of the first row of H(RD) can
be obtained by means of a simple LS estimation step using a
short training sequence generated by the relay [17].

C. Computational Complexity

In the following table, we compare the computational com-
plexity of the DKRF and DALS receivers by evaluating the
dominant cost for SVD calculation needed both to calculate the
rank-one approximations for the DKRF receiver, and the right
inverses of Khatri-Rao products with the DALS receiver. In this
last case, the complexity cost is weighted by l1 and l2, which are
the average numbers of iterations for convergence of the ALS-
X and ALS-Z algorithms, respectively. Note that for a matrix
of dimensions I1 × I2, the complexity of SVD computation is
around O(I1I2 min(I1, I2)) [24].

Define the ratios O1 = OB/OA, O2 = OD/OC , and O3 =
(OB +OD)/(OA +OC), which express how many times
DALS is more computationally demanding than DKRF for
symbol, channels and overall estimation, respectively. We have



XIMENES et al.: CLOSED-FORM SEMI-BLIND RECEIVER FOR MIMO RELAY SYSTEMS 319

O1 = l1PMS
MDJ +N

min(MDJ,N)MDJN
, (16)

O2 = l2JMR
MD +MS

min(MD,MS)MSMD
. (17)

Note that O1 is linear with respect to MS , which means
that concerning symbol estimation DALS is more negatively
affected than DKRF by an increase of this parameter. Similarly,
increasing MR favors the proposed receiver for channel esti-
mation, since O2 scales linearly as a function of the number
of relay antennas. Besides, since P ≥MS is an identifiability
condition for both receivers, an increase of the code length P
to cope with a larger MS only penalizes DALS. Similarly, an
increase of J penalizes ALS-Z but not KRF-Z.

In contrast, for symbol estimation, the DKRF receiver
behaves worse with larger values of N and MDJ , since its com-
plexity scales linearly with their product rather than their sum.
In summary, the DKRF receiver is definitely preferable for sys-
tems with moderate to large numbers of antennas at the source
and/or the relay. Another great advantage of DKRF is to be non-
iterative unlike DALS, as shown by the factors l1 and l2 in O1

and O2.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, the DKRF and DALS receivers are com-
pared in terms of computational complexity by means of
Monte Carlo simulations. The curves were obtained as an
average over 5× 104 Monte Carlo runs. In all simulations,
P = J = MD = N = 8 are used to satisfy all identifiabil-
ity and uniqueness conditions. The source and relay coding
matrices C and G are (truncated) DFT matrices, and we
assume H(SR) ∼ CN (0, 1/MS) and H(RD) ∼ CN (0, 1/MR).
The symbol matrix is expressed as S =

√
ESSo, where So

contains unit-power symbols randomly drawn from a 8-PSK
alphabet, and ES denotes the symbol energy. The first row of
S and H(RD) is composed of ones to avoid scaling ambiguities
(see §III-B). The additive noise samples at relay and destination
are drawn from a complex Gaussian distribution with zero mean
and unit variance. For DALS, random initializations are used at
each run and the stop criterion is based on the normalized recon-
struction error between two successive iterations [17]. For all
simulations, DKRF and DALS have provided nearly the same
performance in terms of BER and channel NMSE.

Fig. 2 shows the complexity ratios O1, O2 and O3, for
ES = 10 dB, calculated using average values for l1 and l2
obtained from all the Monte Carlo runs. From this figure, we
can note that DKRF is much less computationally demanding
than DALS (for MS = 2, we have O3 = 3 meaning that DKRF
is nearly 3 times less costly than DALS). When the number
of antennas at the source and/or relay increases, the complex-
ity savings with DKRF are even more pronounced. Note that,

Fig. 2. Complexity ratio between DALS and DKRF.

Fig. 3. Histogram of l1 and l2.

although O2 decreases as a function of MS , the complexity
associated with symbol estimation dominates the overall cost of
the receivers, i.e. OA 
 OC and OB 
 OD, and O3 is close
to O1, with O1 = O3 when only symbol estimation is carried
out. The dominance of the symbol estimation step usually hap-
pens when the number N of data streams is large compared
to the number of relay/source antennas. As MR increases, the
DKRF receiver becomes more attractive than the DALS one
due to a linear increase of O2 as a function of MR. More gener-
ally, when large arrays are used at the source and relay stations
(large values of MS and MR), the complexity gains of DRKF
over DALS become more significant.

Fig. 3 plots an histogram of the number of iterations l1 and l2
with DALS, for MS = 2 and MS = 8. The other system param-
eters are those considered in Fig. 2. One can note that, in most
of the occurrences, the required number of iterations for con-
vergence fall within 4 and 10, which shows an a priori good
behavior of DALS. However, in the worst case scenarios for
DALS, l1 and l2 can be an order of magnitude greater than their
mean values used to plot Fig. 2, which further increases the
complexity ratios between DALS and DKRF.

To conclude, DKRF is much more computationally efficient
than DALS, while offering the same performance. The com-
plexity of the latter is always a function of the number of
iterations, which depends not only on the initialization but also
on the dimensions of the system. Moreover, the DKRF can
benefit from parallel processing since the rank-one approxima-
tions in each algorithm KRF-X and KRF-Z can be calculated
in parallel. It is worth mentioning that MMSE-based esti-
mators which exploit the second-order statistics of the noise
can also be used to refine the channel and symbol estimates.
These estimators can be considered as either a pre-processing
(before the DKRF algorithm) or a post-processing (after the
DKRF algorithm) stage. Finally, the performance of the pro-
posed closed-form receiver can be further improved to deal
with colored (Kronecker-structured) noise by means of tensor
pre-whitening techniques [25], [26].
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