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Abstract

In this letter, we first introduce a new class of tensor models for fourth-order tensors, referred

to as “nested PARAFAC models”. Then, we present a space-time-frequency (STF) coding scheme for

multiple antenna orthogonal frequency division multiplexing systems. The proposed scheme, called

double Khatri-Rao STF (D-KRSTF) coding, combines time-domain spreading with space-frequency

precoding and provides an extension of Khatri-Rao space-time (KRST) coding [1]. We show that the

received signals define a fourth-order tensor satisfying two nested PARAFAC models, and a semi-blind

receiver is then derived using a two-step alternating least squares algorithm for joint channel and symbol

estimation. Simulation results show that our semi-blind receiver offers superior performance compared

with some previously proposed tensor-based solutions and operates close to the zero forcing receiver

with perfect channel state information.

Index Terms

Space-time-frequency codes, MIMO systems, Khatri-Rao product, nested PARAFAC models.

EDICS: COM-ESTI, COM-MIMO.

I. INTRODUCTION

A number of space-time coding methods with blind detection have been developed using tensor models

[1]- [5]. The approach of [1] proposes a blind-decodable space-time coding based on the parallel factor
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(PARAFAC) decomposition [6]. The work [2] is based on the same approach as [1] but for frequency

selective channels. In [3], a trilinear space-time-frequency coding structure is presented, while in [4], the

so-called constrained factor (CONFAC) model is proposed to derive a wider class of space-time coding

schemes compared to the previous tensor-based works. Recently, a space-time coding relying on the

PARATUCK2 tensor model has been proposed [5], which allows both spreading and multiplexing of data

symbols across space and time. More recently, this model has been generalized to space-time-frequency

coding [7].

Matrix-based space-time/space-frequency coding methods for orthogonal frequency division

multiplexing (OFDM) systems with blind or semi-blind detection have been proposed in the past few

years in a number of works (see e.g. [8], [9] and references therein). The existing matrix-based solutions

rely either on computationally demanding maximum likelihood (ML) detection strategies or on lower

complexity detection strategies. For instance, the method [8] is based on a semi-definite relaxation

approach while [9] relies to second-order statistics of the data.

In this letter, we propose a new class of tensor models for fourth-order tensors that we call nested

PARAFAC models. Then, we present a new space-time-frequency (STF) coding scheme for multiantenna

OFDM systems. This scheme, referred to as double Khatri-Rao space-time-frequency (D-KRSTF) coding,

combines time-domain spreading with a space-frequency constellation rotation (CR) precoding. We show

that the received signals define a fourth-order tensor that satisfies two nested PARAFAC models. By

exploiting two different ways of nesting the underlying third-order PARAFAC models, we derive a

semi-blind receiver based on a two-step alternating least squares algorithm for joint channel and symbol

estimation.

In contrast to matrix-based decoding methods such as those in [8], [9], which exploit either the

space-time or space-frequency codeword structure, the proposed receiver capitalizes on the tensorial

structure of the joint space-time-frequency codeword to operate semi-blindly with fewer receive antennas

than transmit antennas. As shown in our simulation results, the proposed transceiver has a simpler code

design and yields superior performance in comparison with existing tensor-based schemes and receivers.

Moreover, it does not require constant-energy constellations as in differential schemes.

Notations: Scalars are denoted by lower-case letters (a, b, . . .), vectors by boldface lower-case letters

(a,b, . . .), matrices by boldface capitals (A,B, . . .), and tensors by calligraphic letters (A,B, . . .). AT

and A
† stand for transpose and pseudo-inverse of A, respectively. Ai. ∈ C1×R denotes the i-th row

of A ∈ CI×R . The operator diag(a) forms a diagonal matrix from its vector argument, while Di(A)

constructs a diagonal matrix out of the i-th row of A. The Khatri-Rao product between A ∈ CI×R and

B ∈ CJ×R is given by A ⋄B = [A.1 ⊗B.1, . . . ,A.R ⊗B.R] ∈ CIJ×R.
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II. NESTED PARAFAC MODELS

Let us consider the following model for the fourth-order tensor X ∈ CI1×J1×I2×J2

xi1,j1,i2,j2 =

R1
∑

r1=1

R2
∑

r2=1

a
(1)
i1,r1

b
(1)
j1,r1

a
(2)
i2,r2

b
(2)
j2,r2

gr1,r2 . (1)

This model can be interpreted as two nested third-order PARAFAC models sharing G ∈ CR1×R2 as

a common matrix factor. Indeed, let us define the third-order tensors Z(1) ∈ CI1×J1×R2 and Z(2) ∈

CI2×J2×R1 such as

z
(1)
i1,j1,r2

=

R1
∑

r1=1

a
(1)
i1,r1

b
(1)
j1,r1

gr1,r2 (2)

z
(2)
i2,j2,r1

=

R2
∑

r2=1

a
(2)
i2,r2

b
(2)
j2,r2

gr1,r2 (3)

Equations (2) and (3) correspond to PARAFAC decompositions of the tensors Z(1) and Z(2), with matrix

factors (A(1),B(1),GT ) and (A(2),B(2),G), respectively. These tensors admit the following unfolded

matrix forms

Z
(n) = (A(n) ⋄B(n))C(n)T ∈ C

Kn×Rn1 , (4)

with C
(n) =







G
T , for n = 1, n1 = 2

G, for n = 2, n1 = 1
and Kn = InJn. These matrix representations of Z(1) and

Z(2) are associated with a contraction of the first two modes (kn = (in − 1)Jn + jn, for n = 1 and 2).

Defining the quantities

z
(1)
k1,r2

= z
(1)
i1,j1,r2

, and z
(2)
k2,r1

= z
(2)
i2,j2,r1

, (5)

(1) can be rewritten as two nested PARAFAC models

xi1,j1,k2
=

R1
∑

r1=1

a
(1)
i1,r1

b
(1)
j1,r1

z
(2)
k2,r1

, (6)

and
xi2,j2,k1

=

R2
∑

r2=1

a
(2)
i2,r2

b
(2)
j2,r2

z
(1)
k1,r2

, (7)

with respective matrix factors (A(1),B(1),Z(2)) and (A(2),B(2),Z(1)), where Z
(1) and Z

(2) are defined

in (4).

It is worth noting that (6) and (7) are different contracted representations of the same fourth-order tensor

X defined in (1), corresponding to two different ways of nesting the third-order PARAFAC models (2)

and (3) into a single one. These two nested PARAFAC models (6) and (7) containing the full information

of the original tensor model (1), admit the following matrix representations

XJ1K2×I1 = (B(1) ⋄ Z(2))A(1)T ∈ C
J1K2×I1 , (8)

XJ2K1×I2 = (B(2) ⋄ Z(1))A(2)T ∈ C
J2K1×I2 , (9)
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which can be exploited to alternately estimate the matrix factors A
(1) and A

(2) using a two-step ALS

algorithm, as will be shown in Section IV.

Uniqueness conditions: Application of the Kruskal’s condition [10] allows concluding that the nested

PARAFAC models (6) and (7) are essentially unique, i.e. their factor matrices are unique up to column

permutation and scaling, if

kA(n) + kB(n) + kZ(n1) ≥ 2Rn + 2,

for (n, n1) ∈ {(1, 2), (2, 1)} (10)

where kX denotes the Kruskal-rank (also called k-rank) of X, corresponding to the largest integer kX

such that every set of kX columns of X is independent.

III. SYSTEM MODEL

Let Mt and Mr denote, respectively, the number of transmit and receive antennas in the considered

multiple input multiple output (MIMO) communication system. At the transmitter, orthogonal frequency

division multiplexing (OFDM) is used. We consider a group of F neighboring subcarriers across which

the channel is assumed constant. A time-slotted transmission is considered, where each time-slot spans

K symbol periods. If the channel is constant over a block time corresponding to T time-slots, the

frequency-domain version of the discrete-time baseband received signal1 in absence of noise can be

written as

Xt,f = HUt,f ∈ C
Mr×K , (11)

where Xt,f is the received signal matrix and Ut,f ∈ CMt×K is the complex space-time code matrix

associated with the t-th time-slot and f -th subcarrier, with E[trace(Ut,fU
H
t,f )] = KMt, t = 1, . . . , T ,

f = 1, . . . , F . The channel matrix H ∈ CMr×Mt has i.i.d CN(0,1) entries, with E[trace(HH
H)] = MtMr.

The transmitted signal power is normalized so that the signal-to-noise (SNR) ratio at each receive antenna

is independent of the number of used transmit antennas. Let st ∈ CMt×1 denote the t-th transmitted

symbol vector, satisfying E[trace(sHt st)] = Mt. The proposed STF encoding which defines Ut,f consists

of two operations and is now detailed.

First, the symbol vector st is linearly precoded across Mt transmit antennas and F subcarriers using

a set of frequency-dependent constellation rotation (CR) matrices {Θ1, . . . ,ΘF }. The (t, f)-th precoded

symbol vector is denoted by zt,f
.
= Θfst. The f -th CR matrix Θf is chosen as Θf

.
= Gdiag(af ) ∈

CMt×Mt , where G ∈ CMt×Mt is an Mt-point inverse discrete Fourier transform (DFT) matrix and

1The MIMO-OFDM system is modeled by set of F parallel flat-fading MIMO channels under the assumption of subcarrier

orthogonality.
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af ∈ CMt×1 is the f -th CR vector that performs successive phase rotations on the symbol vector

st to be transmitted by the f -th subcarrier. For F = 1, optimized choices for the CR matrix Θ are

discussed in [11] for a given number of antennas and modulation type. Here, where F ≥ 1, a suboptimal

frequency-domain extension of constellation rotation is proposed. This feature induces a multilinear

structure to the transmitted signal and is exploited by the proposed receiver as will be shown later.

The second operation “diagonally” encodes the CR precoded symbol vector zt,f across K symbol

periods using a coding matrix C ∈ CK×Mt as follows [1]:

Ut,f = diag
(

zt,f

)

C
T . (12)

Substituting zt,f = Θfst = Gdiag(af )st into (12), we can write (11) as:

Xt,f = Hdiag
(

Gdiag(af )st
)

C
T . (13)

Choice of C and af ’s: Along the lines of [1], we choose C as a Vandermonde matrix with generators

ej2π(m−1)/Mt , m = 1, . . . ,Mt, meaning that its (k,m)-th entry is given by ck,m
.
= ej2π(k−1)(m−1)/Mt .

Additionally, we choose af
.
= [1, ej2π(f−1)/Mt , . . . , ej2π(f−1)(Mt−1)/Mt ]T ∈ CMt×1, f = 1, . . . , F .

Although suboptimal, this choice ensures good channel and symbol identifiability properties, which is

beneficial from the receiver design viewpoint. The code rate is given by ( Mt

KF )log2(µ), where µ is the

modulation cardinality.

Note that the received signal model (13), associated with the t-th time-slot and f -th subcarrier, defines

a matrix slice Xt,f ∈ CMr×K of the fourth-order tensor X ∈ CMr×K×T×F given by

Xt,f = Hdiag(Gdiag(Af.)st)C
T , (14)

where we have defined Af.
.
= af , i.e. A = [a1, . . . ,aF ]

T ∈ CF×Mt . This tensor X can be written

elementwise as

xmr,k,t,f =

Mt
∑

r1=1

Mt
∑

r2=1

hmr ,r1ck,r1st,r2af,r2gr1,r2 . (15)

Proof: Denoting by D = diag(Gdiag(Af.)st) the diagonal matrix that contains the space-frequency

precoded signals to be time spread before transmission, the (mr, k)-th entry of Xt,f is given by

xmr ,k,t,f =

Mt
∑

r1=1

hmr ,r1ck,r1dr1,r1 , (16)

with
dr1,r1 =

Mt
∑

r2=1

st,r2af,r2gr1,r2 . (17)

Replacing (17) into (16) gives (15).

Comparing (15) with (1), we can conclude that the received signal tensor X satisfies two nested

PARAFAC models, with the following correspondences

(I1, I2, J1, J2, R1, R2) ↔ (Mr, T,K, F,Mt,Mt), (18)

(A(1),A(2),B(1),B(2),G) ↔ (H,S,C,A,G). (19)
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Using the correspondences (18)-(19), the matrix representations (8)-(9) become

XKTF×Mr
= (C ⋄ (S ⋄A)GT )HT , (20)

XFMrK×T = (A ⋄ (H ⋄C)G)ST . (21)

Particular cases: The nested PARAFAC models satisfied by the D-KRSTF coding scheme reduce to two

different PARAFAC models for F = 1 and K = 1, respectively. More specifically, from Eq. (20) we

obtain the two following cases: i) For K = 1, we have XTF×Mr
= (S ⋄A)(HG)T , which represents a

Khatri-Rao space-frequency (KRSF) coding model; ii) For F = 1, we have XKT×Mr
= (C⋄(SGT ))HT ,

representing a Khatri-Rao space-time (KRST) coding model.

Uniqueness conditions: Due to its Fourier structure, G is full rank, and we have kZ(n) = kA(n)⋄B(n)

in the uniqueness conditions (10). Applying the correspondences (18)-(19), these conditions become

kH + kC + kS⋄A ≥ 2Mt + 2 and kS + kA + kH⋄C ≥ 2Mt + 2. Taking into account the Vandermonde

structure of A and C, we can conclude that these matrices are also full rank. Moreover, due to the random

nature of H and S, we have kH ≥ 1 and kS ≥ 1. We are interested in cases where the Khatri-Rao products

H ⋄C and S ⋄A are full column-rank. In these cases, Kruskal’s conditions then become

min(Mr,Mt) + min(K,Mt) ≥ Mt + 2, (22)

min(T,Mt) + min(F,Mt) ≥ Mt + 2. (23)

These conditions show that the numbers Mr of receive antennas and K of symbol periods play a

symmetrical role, as it is the case also for the numbers T of time slots and F of subcarriers. Note

that there are four situations in which both H ⋄C and S ⋄A are full column-rank. Assuming Mt ≥ 2,

we obtain the following practical corollaries:

• If H and S (or A) are full column-rank, then K ≥ 2 symbol periods and F ≥ 2 subcarriers (or

T ≥ 2 time-slots) ensure uniqueness;

• If C and A (or S) are full column-rank, then Mr ≥ 2 receive antennas and T ≥ 2 time-slots (or

F ≥ 2 subcarriers) ensure uniqueness;

IV. SEMI-BLIND RECEIVER

Assuming that the coding matrices (A,C,G) are known at the receiver, we exploit (20)-(21) to derive

a two-step alternating least squares algorithm (ALS) that alternately minimizes the following conditional

LS criteria

min
H

‖XKTF×Mr
− (C ⋄ (Ŝit−1 ⋄A)GT )HT ‖2F , (24)

min
S

‖XFMrK×T − (A ⋄ (Ĥit ⋄C)G)ST ‖2F , (25)
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which gives the following two-step ALS to jointly estimate the channel and symbol matrices.

Initialization: Set it = 0; Randomly initialize Ŝ0.

1) it = it+ 1;

2) Compute the LS estimate of H:

Ĥ
T

it
=

[

C ⋄ (Ŝit−1 ⋄A)GT

]†

XKTF×Mr

3) Compute the LS estimate of S:

Ŝ
T

it
=

[

A ⋄ (Ĥit ⋄C)G
]†

XFMrK×T

4) Repeat steps (1)-(3) until convergence.

After convergence, the scaling factors affecting the estimated symbol and channel matrices can

be eliminated by using Mt known pilot symbols (one per transmit antenna) inserted in the first

time-slot, meaning that the first row S1. of the symbol matrix is known. The final estimate of

the symbol matrix is obtained by simply re-scaling each column of the estimated symbol matrix:

Ŝfinal = Ŝ[diag(Ŝ1.)]
−1diag(S1.). Consequently, the final estimate of the channel matrix is then given

by Ĥ
T
final =

[

C ⋄ (Ŝfinal ⋄A)GT
]†

XKTF×Mr
.

Identifiability: The channel and symbol matrices are estimated by alternately minimizing the conditional

LS criteria (24) and (25), with respect to H and S, respectively. Uniqueness of these LS estimates requires

that C ⋄ (S ⋄A)GT and A ⋄ (H ⋄C)G be full column-rank, implying FT min(K,Mr) ≥ Mt. As for

the uniqueness issue, this condition puts in evidence the symmetrical and complementary roles played by

the frequency (F ) and time (T ) dimensions, on one hand, and the space (Mr) and time (K) dimensions,

on the other hand, for jointly ensuring the identifiability of the symbol and channel matrices.

V. SIMULATION RESULTS AND DISCUSSION

Next, we discuss the simulated performance of the proposed semi-blind receiver in terms of

bit-error-rate (BER) and normalized mean square error (NMSE) of channel estimation. Each BER curve is

an average of 104 Monte Carlo runs, each one representing a different channel realization, the coefficients

of which are drawn from an i.i.d. complex-valued Gaussian generator. At each run, the transmitted data

are drawn from PSK-type encoded symbols, and the additive noise power is generated according to the

measured signal-to-noise ratio (SNR)= 10log10(‖XKTF×Mr
‖2F /‖V‖2F ), where V ∈ CKTF×Mr is the

additive noise matrix, whose entries are modeled as zero-mean circularly symmetric complex Gaussian

random variables.

In Figure 1, the BER and NMSE performances of D-KRSTF coding are compared with those of

KRST and KRSF coding (particular cases of the proposed system), corresponding to pure time and
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frequency spreading, respectively [1]. We are particularly interested in configurations with Mr < Mt,

where Mr = 1 or 2. This assumption is reasonable in the downlink of mobile communication systems

where the number of antennas at the mobile terminal is limited due to physical space constraints. For

D-KRSTF coding, the receiver algorithm proposed in Section IV is used. For KRST/KRSF coding, we

have used a two-step ALS receiver derived from the resulting PARAFAC model [1]. The fixed settings

are Mt = 2, T = 5 and 4-PSK. For Mr = 1, notice that D-KRSTF with (K,F ) = (2, 2) trades rate

for diversity and significantly outperforms KRST and KRSF with K = 2 and F = 2, respectively. For

Mr = 2, it can be seen that D-KRSTF with (K,F ) = (2, 2) offers a remarkable improvement over

KRST under the same transmission rate. An extra improvement is obtained by doubling the value of

K, i.e. using (K,F ) = (4, 2) at half transmission rate. Regarding the NMSE of the estimated channel,

we notice that a more accurate channel estimation is achieved with D-KRSTF. The NMSE performance

improves by increasing Mr and/or K.

In Figure 2, we draw comparisons of D-KRSTF with competing tensor-based space-time (ST) schemes

operating at a code rate of 2. The fixed parameters are Mt = Mr = 2, K = 3, F = 2, T = 5 and 8-PSK.

More precisely, we consider the following schemes: KRST [1], CONFAC-ST [4], and PARATUCK2-ST

[5]. For the CONFAC-ST and PARATUCK2-ST schemes, the allocation matrices are fixed to the following

structures:

ΨCONFAC = ΦCONFAC = I2 ⊗ 1
T
2 , ΩCONFAC = 1

T
2 ⊗ I2,

ΨPARATUCK2 =











1 0

0 1

1 0











ΦPARATUCK2 =











1 0

0 1

0 1











.

The trilinear STF coding scheme [3] and the recently proposed PARATUCK2-STF scheme [7] are

also included in our comparisons. For all of tensor-based STF schemes, the code rate is fixed to 1,

and a two-step ALS receiver is used for joint channel and symbol estimation. This figure also shows

the performance of the coherent maximum likelihood (ML) decoder for the D-KRSTF scheme, which

assumes perfect channel state information (CSI). First, it can be seen that D-KRSTF outperforms the

competing tensor-based ST schemes due to the extra degrees of freedom added by the frequency spreading

dimension, which provides an additional coding gain. Compared to other tensor-based STF schemes, the

proposed approach also presents a superior BER performance. It is worth mentioning that D-KRSTF has

a simpler coding structure compared to trilinear STF and PARATUCK2-STF, although the latter affords

a time-frequency allocation of data streams. In particular, PARATUCK2-STF has stronger constraints on

the value chosen for P and involves a more computationally complex receiver processing.

In conclusion, our results confirm the merits of the D-KRSTF transceiver which arise by jointly using

space, time and frequency domains for coding (at the transmitter) and, consequently, by exploiting two

nested PARAFAC models for semi-blind symbol/channel estimation (at the receiver).
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Fig. 1. BER and NMSE performances of D-KRSTF, KRST, and KRSF.
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Fig. 2. Comparison with competing tensor-based solutions.
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